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_ ABSTRACT ............... ... - .,

Smart composite structurels With distribfit6d"_ia/sbi:s and actuators have the capability to

actively respond to a changing environment while offering significant weight savings and

additional passive controllability through ply tailoring. Piezoelectric sensing and actuation

of composite laminates is the most promising concept due to the static and dynamic control

capabilities. Essential to the implementation of these smart composites are the development

of accurate and efficient modeling techniques and experimental validation. This research

addresses each of these important topics.

A refined higher order theory is developed to model composite structures with surface

bonded or embedded piezoelectric transducers. These transducers are used as both sensors

and actuators for closed loop control. The theory accurately captures the transverse shear

deformation through the thickness of the smart composite laminate while satisfying stress

free boundary conditions on the free surfaces. The theory is extended to include the effect

of debonding at the actuator-laminate interface. The developed analytical model is

implemented using the finite element method utilizing an induced strain approach for

computational efficiency. This allows general laminate geometries and boundary

conditions to be analyzed. The state space control equations are developed to allow

flexibility in the design of the control system. Circuit concepts are also discussed.

Static and dynamic results of smart composite structures, obtained using the higher

order theory, are correlated with available analytical data. Comparisons, including

debonded laminates, are also made with a general purpose finite element code and available

experimental data. Overall, very good agreement is observed. Convergence of the finite

-element implementation of the higher order theory is shown with exact solutions.

Additional results demonstrate the utility of the developed theory to study piezoelectric

actuation of composite laminates with pre-existing debonding. Significant changes in the

ii



modes:shapesand reductionsin i l_eCQntro!:authority..resulI-due.to.,partially:d_b0nded

actuators.

An experimentalinvestigationaddressespractical issues,suchascircuit designand

implementation,associatedwith piezoelectricsensingandactuationof compositelaminates.

Compositespecimenswith piezoelectrictransducersweredesigned,constructedandtested

to validate thehigher ordertheory. Thesespecimenswere testedwith variousstacking

sequences,debondinglengthsandgainsfor bothopenandclosedloopcases.Frequency

changesof 15% anddamping on the order of more than 20% of critical damping, via

closedloopcontrol,wasachieved.Correlationwith thehigherordertheoryis verygood.

Debondingis shownto adverselyaffect the openandclosedloop frequencies,damping

ratios,settlingtimeandcontrolauthority.
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Structures by nature are subjected to static and dynamic forces which cause

deformation. In the past, designers have compensated for undesirable deformation and

vibration by adding stiffeners and passive devices which often introduce a significant

weight penalty. The concept of smart structures has received a great deal of attention

recently as an alternative to conventional techniques. These advanced structures can be

designed to actively react to disturbance forces to maintain structural integrity while

maintaining, or even improving, the level of performance. Although smart structures have

enormous potential for an abundance of applications ranging from reducing helicopter noise

(Anonymous; 1994), precision antenna positioning (Stevens; 1991), improving aeroelastic

stability of fixed (Heeg; 1992) and rotory wing (Chandra and Chopra; 1993) aircraft, a

number of basic issues still require further investigation. These issues include development

of accurate, yet efficient, mathematical modeling techniques and experimental

investigations. The primary focus of this dissertation is to address these key issues related

to smart composite structures.

The exact definition of a smart structure is rather ambiguous and deserves some

discussion. A smart stzucture does not necessarily posses any inherent "intelligence". For

instance, the mechanical governor for a gasoline engine, which serves to automatically limit

the speed of the engine, could be termed a smart structure. Although this device actively

controls the operation of the engine, it is not really smart. Other useful devices have been

invented in the past, such as the bimorph thermostat or the modern elevator, which could

be termed smart structures. These structures actively respond to their surroundings, but do

not posses any real intelligence. The term smart structures is a more generic term which is

simply being used to describe the next generation of these devices aimed at enhancing

functionality while reducing weight (Sirkis; 1996). A more precise definition has been

suggested to characterize smart structures as load bearing structures with the ability to



actively sense and react to its environment via onboard sensors, actuator's anti ..................

computational/control capabilities (Rogers; 1989). It must be noted that in the current

literature, the terms smart, active, adaptive, metamorphic and intelligent are used

interchangeably.

Integral components of these structures are smart materials. This class of materials can

change their mechanical properties in response to an external stimuli.. They can be used in

sensing and/or actuation modes either" independently, or as part of a larger system. Several

different types of these materials exist, each with its own set of unique properties, and are

described in the next section. Key issues associated with the development of smart

structures, including mathematical modeling techniques, am discussed.

1.1 Smart Materials

Magnetostrictive and electrostrictive materials change shape when subjected to magnetic

and electric fields, respectively. The most common magnetostrictive material is Terfenol-D

which is capable of inducing strains up to 0.2%. It is named after its components terbium

(TER), iron (FE), dysprosium (-D) and the place it was discovered, the Naval Ordinance

Lab (NOL). Metglas is another magnetostrictive material. Although the maximum induced

strain is much less, it can be manufactured as a foil for easy embedding in composites. An

integrated actuation system for individual control of helicopter rotor blades using Terfenol-

D actuators has been investigated by several researchers (Ghorayeb and Straub; 1995:

Freidmann et al.; 1995). This class of smart materials have the advantage that wires

connecting to the material directly are not necessary. However, the metal components used

in these actuators result in a significant weight penalty. Other potential applications include

torpedo control surfaces, gimballing cockpit simulators and vibration damping of optical

benches (Card; 1992). Electrostrictive transducers have been used in a number of

applications including adaptive optic systems, scanning tunneling microscopes and

precision micropositioners. (Newnham and Ruschau; 1991). Both magnetostrictive and



,...

electrostrictive rnaterials change shape in one direction only regardless of the polarity of the

applied field. Therefore, a return mechanism needs to be implemented along with the

materials themselves. This introduces additional complexities and restrictions on their

potential for use as simple and light weight actuators.

Another class of smart materials is electrorheological (ER) fluids which are

characterized by a considerable variation of their rheological properties when an electric

field is applied (Winslow; 1949). In the absence of an electric field, the strain rate of ER

fluids is directly proportional to the applied stress, much like typical Newtonian flow

characteristics. When exposed to an electric field, the viscosity, damping capability and

shear strength of these materials increase significantly. These properties can also be rapidly

altered with the application or removal of an electric field. This makes ER fluids attractive

for providing a rapid response interface in controlled mechanical devices (Carlson et al.;

1990). An active engine mount system has been proposed utilizing ER fluids (Card;

1992). In this application, the viscosity of the ER fluid is adjusted to change the natural

frequency of the system away from the dominant frequency band during service.

Advanced helicopter rotor systems, such as soft hingeless and bearingless rotors, are

mechani_cally less complex than traditional articulated rotors. However, aeroelastic

instabilities, such as air and ground resonance, have emerged as major problems in these

rotor systems. ER fluid based dampers are a viable candidate for active damping and

stability augmentation (Kamath and Wereley; 1995). Cable-stayed highway bridges must

be flexible enough to avoid damage due to seismic activity, but not so flexible as to allow

an adverse buffet response to a wind loading. Traffic loading which generates small deck

vibrations is also a consideration. An ER fluid damper suitable for vibration and seismic

protection of civil structures which addresses these considerations has been designed and

tested (Makris et al.; 1995)
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Shape memory alloys (SMA) are another type of smai[iin_lterial ". S:MAs"suci_ iis Nitin01

recover their previously undeformed shape upon heating (Funakubo; 1987). This is due to

a change in the crystalline structure known as a reversible austenite to martensite phase

transformation at a specific temperature. Large induced strains are possible and the

Young's modulus increases by almost a factor of three. SMAs have been used in

spacecraft antenna. A wire hemisphere of the material is crumpled into a tight ball. When

heated above 77°C, the ball opens into its original shape of a fully formed antenna

(Schetky; 1979). In another application, the fundamental frequency of a solid rectangular

composite beam was altered by as much as 35% using a 1.3% volume fraction of SMA

wires (Chandra; 1993). This concept was also exploited to design a variable speed

helicopter rotor (Chopra; 1993). Solar collectors that are focused on a central receiver are

designed with a mechanism for defocusing the collector or deactivating it by turning it out

of the path of the sun's rays. This is required to avoid damaging the receiver during

periods of inoperability. SMAs have been shown to exceed design specifications to actuate

these solar arrays (Lobitz; 1995). Smart dental braces could also be made using SMAs

(Newnham and Ruschau; 1991). Since SMAs are actuated by heat, the response time is

quite slow. While electrical heating sources allow the material to respond within seconds,

cooling often takes on the order of minutes. Although positioning and stiffening

applications appear promising, SMAs are impractical as actuators for vibration control due

to their slow response time.

Currently, piezoelectric materials are the most versatile smart materials. When a

piezoelectric material is stressed mechanically by a force, it generates and electric charge. If

the electrodes are not short circuited, a voltage associated with the charge appears. This is

the direct effect discovered by Jacques and Pierre Curie in 1880. A year later, Gabriel

Lippman predicted the converse effect which was verified by the Curies. The converse

effect occurs when a piezoelectric material is stressed electrically by a voltage which results
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in a change in the material's dimensions (Encyclopedia Britannica; 1994). A piezoelectric

element is therefore capable o1' being used as either a sensor or as an actuator when it is

coupled to a composite substructure via surface bonding or embedding. The nature of the

electric charge and the dimension Change (positive or negative) depends on the polarity of

the mechanical stress and the applied electric field, respectively. Consequently,

bidirectional actuation and sensing are possible and no external return mechanism is

necessary. This property of piezoelectric materials makes them distinct from electrostrictive

materials which can only be actuated in one direction. Natural crystals, such as quartz,

Rochelle salts, troumaline and lithium sulfate, were the first piezoelectric materials to be

used. A quartz transmitter used for sonar applications appeared in 1916 (Mason; 1950).

Early phonograph pickups were made flom Rochelle salts. In the 1940s it was discovered

that the ceramic material barium titanate could be induced to exhibit piezoelectric properties

by exposing it to a high temperature and an electric field. Currently, most piezoelectric

devices utilize a similar piezoceramic material, lead zirconate titanate (PZT), which was first

used in the 1950s. The desirable properties of PZT include a high level of piezoelectric

activity and a wide frequency range. Active flight control using PZT actuators has been

explored by several researchers for both fixed wing aircraft (Lin and Crawley; 1995: Leeks

and Weisshaar; 1995) and rotorcraft (Spangler and Hall; 1990: Ben-Zeev and Chopra;

1995). Active flutter suppression using PZTs has also been investigated (Heeg; 1992).

Vibration control using PZTs has been studied extensively (Crawley and de. Luis; 1987:

Hanagud et al; 1992: Chandrashekhara and Agarwal; 1993). PZTs have also been used in

the emerging field of MicroElectroMechanical Systems (MEMS) for building

microactuators (Ikuta; 1992). A video tape head positioner has been developed based on a

bimorph PZT actuator. The nonlinear properties of some materials allows for the creation

of tunable transducers using bias fields or forces. For instance, rubber is a highly

nonlinear elastic medium since the material stiffens noticeably under stress. A transducer
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Under lowcan be constructed whichconsists of_at.temating-tayers of rubber and PZT.

stress bias, the piezoelectric layers dominate at the resonant frequency of the transducer.

Under a high stress bias, tim rubber stiffens and dominates at a different resonant

frequency. Therefore, the transducer is tunable to a specific resonant flequency using a

stress bias (Xu; 1990). Piezoceramic materials can also be used for sensing applications.

Accelerorneters are often constructed using PZTs. A PZT sensor has been proposed to

monitor the rate of rain fall and adjusts automobile windshield wipers to the optimal speed

(Taguchi; 1987). PZT sensors and actuators have also been investigated for use in smart

automobile suspensions which improve drivability while enhancing passenger comfort

(Tsuka and Nakomo; 1990: Thirupathi and Naganathan; 1992).

In 1969, it was discovered that the polymer Polyvinylidene Fluoride (PVDF) can also

develop piezoelectric properties (Kawai; 1969). The polymeric piezoelectric material PVDF

has a variety of actuation applications including vibration control (Bailey and Hubbard;

1985), artificial hands (Brei; 1994) and trailing edge flap actuation for rotorcraft (Seeley et

al.; 1996). Although the compliant nature of PVDF often has certain advantages, it is not

stiff enough to develop the force needed for most applications. Therefore, PVDF materials

are more commonly used in sensing applications such as accelerometers (Andre et al.;

1992) and microphones (Garner; 1977: Sullivan and Powers; 1978). PZT actuation is

more common than PVDF due to the larger forces that can be generated resulting from the

higher stiffness.

1.2 Key Issues in Smart Structures

Induced strain actuation and sensing using piezoelectric materials offers significant

advantages, such as weight savings, over other possible actuation and sensing

mechanisms. Therefore, piezoelectric materials are used in this dissertation. Composite

structures, which are becoming increasingly popular due to their light weight and

innovative design possibilities offered by ply tailoring, can be very effective as elements of



smart structures. Many of the smartstructureapplicationsfor piezoelectricmaterials,

including positioning, vibration control and aeroelasticresponse,involve the surface

bondingor embeddingof thesematerialsin theprimarycompositesubstructure.Several

key issuesmust be addressedfor theefficient implementationof thesesmartcomposite

structures.Perhapsthemostimportantissue is the development of accurate mathematical

tools for the analysis of surface bonded/embedded induced strain actuators in composite

laminates (Chopra; 1996). The mathematical analysis technique must be general in nature,

computationally efficient and be able to include debonding between the piezoelectric

elelnents and the composite substructure. Experimental investigation is also necessary to

validate the developed model. All of these issues are addressed in this dissertation.

1.2.1 Mathematical modeling and analysis: A key issue in the efficient implementation of

these smart composite laminates is the development of practical rnathematical modeling

tools. There is a need for a general theory which is both accurate and computationally

efficient and accounts for debonding at the piezoelectric actuator-composite substructure

interface. A detailed review of the existing literature, including both analytical and finite

element approaches, is described next.

Bernoulli-Euler beam analysis was used by Bailey and Hubbard (1985) to derive a

distributed parameter control theory for active control of a cantilever beam. An uniform

strain model was proposed by Crawley and deLuis (1987). They showed that a bonding

layer between the piezoelectric actuator and the beam which is sufficiently thin and stiff

becomes negligible. In a later work, Crawley and Anderson (1989) proved that the simple

uniforrn strain model, which assumes a constant state of strain in the piezoelectric layers, is

not accurate when the beam to actuator thickness ratio is less than five. They also

discussed the nonlinear nature of piezoelectric materials at higher electric fields. The ability

of piezoelectric actuators to produce bending and twist in a composite plate, both

independently and simultaneously, was first investigated by Lee (1990) using classical
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laminate-theory.(CLT),_=I4-is.derivation of the governing equations for piezoelectric sensors

and actuators, based on classical larninate theory, has been referred to in the literature by

many different researchers. Wang and Rogers (1991) used Heaviside functions to model

spatially discrete actuators embedded in composite laminates. Crawley and Lazarus (1991)

presented an exact solution for a free isotropic plate. They also presented a Ritz solution

for anisotropic plates with bonded actuators and more complex boundary conditions. Their

mathematical model was based on classical laminate theory (CLT) and was verified

experimentally. Classical approaches have also been extended to included transverse shear

effects in anisotropic sandwich plates (Koconis et al.; 1994). All of the above analyses

were based on the classical laminate theory which does not include transverse shear

deformation and is therefore restricted to thin beam/plate applications. First order theory,

also known as the Timoshenko theory for beams and the Midlin theory for plates, has been

used to model composite structures with embedded piezoelectric actuators and sensors

(Richard and Cudney; 1993: Tzou and Zhong; 1993). Although an improvement over

classical theory, the first order shear deformation theory accounts for transverse shear

deformation only in an average sense. Mitchell and Reddy (1995) recently presented a

hybrid theory which more accurately accounts for the transverse shear strain. In their

work, they also discuss the influence of the electric potential on a Navier type solution and

show that it is important only in certain cases. The induced strain actuation problem for a

beam was solved in closed form by Lin and Rogers (1993) by using approximations for the

stress fields. The exact solution for a simply supported rectangular laminated composite

plate, including piezoelectric actuation, has also been presented (Ray et al.; 1993). This

work was based on an earlier elasticity solution of Pagano (1970). A power series solution

was presented for composite cylinders with piezoelectric layers (Mitchell and Reddy;

1995). Other analytical investigations include the optimal design of embedded piezoelectric

actuators (Kim and Jones; 1990) and increasing the authority of actuators through discrete



attachment techniques (Chaudhry and Rogers; 1993). The aforementioned research using

analytical approaches provides essential physical insight into problems involving

piezoelectric sensing and actuation. However, it is very difficult to generalize these

analytical solutions to practical problems with realistic shapes and boundary conditions.

The finite element method offers the flexibility to model many different types of

structures with integrated piezoelectric materials and various boundary conditions. The

majority of research using this approach has focused on using one and two dimensional

beam and plate type approaches. Hanagud et al. (1992) and Hwang et al. (1993)

developed finite element models using classical beam and plate theories, respectively.

Viscoelastic effects have also been incorporated into a finite element model based on

classical laminate theory (Shieh; 1993). These models are the least complex, but they do

not account for transverse shear effects which are known to be important in the analysis of

anisotropic composite laminates. They are also restricted to thin beams and plates. Finite

element approaches based on first order shear deformation theory do account for transverse

shear deformation, but only in an average sense. These approaches have been used by

several researchers to model piezoelectric actuation of composite laminates (Shah et al;

1993: Detwiler et al.; 1995) and have been extended to investigate vibration control

(Chandrashekhara and Agarwal; 1993). The crude approximation of the transverse shear

strains in the theory requires the use of shear correction factors. Furthermore, the finite

element implementation of the first order theory is susceptible to unwarranted complexity

and/or large inaccuracies due to spurious stiffness effects depending on the choice of

interpolation. A very accurate approach is the layerwise theory of Reddy (Robbins and

Reddy; 1991) which has been used to model piezoelectrically actuated beams

(Chandrashekhara and Donthireddy; 1996) and has also been extended to included

thermoelastic effects (Lee and Saravanos; 1995). However, the computational effort

depends on the number of plies and can become prohibitively expensive for thick
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concept of finite element mesh superposition in which an independent overlay mesh is

superimposed on a global mesh to provide localized refinement in regions of interest for a

more economical analysis. Mitchell and Reddy (1995) have developed a refined hybrid

theory to model piezoelectric actuation and sensing in composite laminates which would be

appropriate to implement using the finite element method. A three dimensional approach

has also been investigated (Ha et al; 1992). An important distinction in the above analyses

must be made regarding the electric potential. Some approaches include the electric

potential in the total energy potential (Detwiler et al; 1995: Ha et al. 1992). The not so

typical case of a nonuniform electric field can be modeled using this approach at the

expense of additional degrees of freedom which are required at each of the nodes leading to

increased CPU time. By neglecting the electric potential (Hwang et al; 1993:

Chandrashekhara and Agarwal; 1993; Seeley and Chattopadhyay, 1996), the extra degrees

of freedom can be neglected resulting in significant computational savings while retaining

the ability to accurately model most practical actuator/sensor configurations.

Relatively little attention in the literature has been paid to detailed modeling issues

associated with adaptive composite structures, with surface bonded/embedded piezoelectric

actuators and sensors, which include debonding. The global control capabilities of

composite structures with piezoelectric sensing and actuation are a result of local stresses

introduced by the piezoelectric actuators. However, the introduction of piezoelectric

materials creates discontinuities which complicates the analysis of these smart composites.

Debonding may also occur during the lifetime of the structure. In most of the existing

work mentioned earlier, the actuators are assumed to be perfectly embedded or bonded to

the primary structure . Therefore, issues associated with debonding of actuators is

avoided. However, it has recently been shown by Seeley and Chattopadhyay (Seeley and

Chattopadhyay; 1996) that the control authority of smart structures can be significantly
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mispredicted in the presence of debonding. The effects of these p_:oblems must be ..........................

investigated. Although three dimensional approaches for modeling debonding in composite

structures (Yang and He; 1994: Whitcomb; 1989) are more accurate than two dimensional

theories (Pavier and Clarke; 1996: Whitcomb; 1981: Kardomateas and Schrnueser; 1988"

Gummadi and Hanagud; 1995), their implementation can be very expensive for pra,::tical

applications. The layer-wise approach (Barbero and Reddy; 1991) is an alternative since it

is capable of modeling displacement discontinuities. However, the computational effort

increases with the number of plies. Recently, a refined higher order theory, developed by

Chattopadhyay and Gu (1994), was shown to be both accurate and efficient for modeling

delamination in composite plates and shells of moderately thick construction.. This theory

has also been shown to agree well with both elasticity solutions (Chattopadhyay and Gu;

1996) and experimental results (Chattopadhyay and Gu; 1996).

For the analysis of arbitrarily thick composites with surface bonded or embedded

piezoelectric actuators and sensors, it is important to have a more effective general theory

than is currently available. It has long been recognized that higher order laminate theories

provide an effective solution tool for accurately and efficiently predicting the deformation

behavior of composites laminates subjected to bending loads. However, it is difficult to

provide a consistent displacement field which accurately satisfies the stress free boundary

conditions at the free surfaces while maintaining continuity of strains through the thickness.

Modeling the debonding of the piezoelectric materials has not been adequately addressed in

the literature. To investigate this issue, a general theory is developed for the analysis of

smart composites including the presence of debonding. The developed theory is based on

the general higher order theory of Reddy (1990) which was implemented using the finite

element method by Bhimaraddi and Stevens (1984) and Ren and Hinton (1986). In this

dissertation, the higher order theory is extended to model composites with arbitrary

thicknesses including surface bonded or embedded piezoelectric actuators and sensors.
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The current formulation also allows for both separation and slipping which are a result of

debonding. The theory developed here, which is implemented using the finite element

method, is expected to more effectively model the complex stress distributions found in

smart composite laminates with a reasonable amount of computational effort.

1.2.2 Experimental research: Experiments are essential for validating mathematical models

and for understanding practical aspects associated with the actual implementation of such

structures. However, experimental studies of smart structures are reported less frequently

in the literature than mathematical models. Bailey and Hubbard (1985) performed an

experimental investigation to provide increased vibration damping of a flexible beam using

a piezoelectric film (PVDF). Chopra et al. (1993: 1995: 1996) has performed several

experiments involving piezoelectric actuation with application to rotorcraft. Crawley and

Lazarus (1991) presented an experimental investigation of a cantilever composite plate

utilizing piezoelectric actuation for static shape control. Torsion and bending of

piezopolymer plates were experimentally demonstrated by Lee and Moon (1989).

Experimental optimal control has been studied for a cantilever beam using piezoelectric

sensors and actuators (Hanagud; 1992). Moir6 interferometry was used to study the

induced strains on a plate resulting from piezoelectric actuation (Mollenhauer and Griffen;

1994). This study concluded that numerical approaches can be used to accurately predict

induced strains. Heeg (1992) experimentally investigated the improvement of aeroelastic

stability for fixed wing aircraft using piezoelectric actuation. Debonding of smart

composite laminates using piezoelectric actuation is an important issue. Yet, no

experimental testing of composite laminates utilizing piezoelectric actuation with debonding

has been reported in the literature. Therefore, this important topic is investigated in the

current research.



2. Objectives

The objective of this research is to address important issues related to smart structures.

First, a general theory is developed to model composite structures with surface bonded or

embedded piezoelectric transducers used as both sensors and actuators for closed loop

control. The theory accounts for the presence of debonding. Experiments are then

performed to validate the developed theory.

The developed theory, which utilizes a refined higher order displacement field,

accurately captures the transverse shear deformation through the thickness of the smart

composite laminate while satisfying stress free boundary conditions on the free surfaces.

The model is implemented using the finite element method to allow general laminate

geometries and boundary conditions to be analyzed. The state space equations of motion

are developed to allow insight into the design of the controls. The model is extended to

incorporate the presence of debonding in the composite laminate at the interface between the

piezoelectric actuators and the underlying substructure. The developed model is accurate,

computationally efficient and is applicable to practical geometries.

Extensive correlation studies are presented to demonstrate the utility of the higher order

theory to model smart composite laminates. Comparisons, including debonded laminates,

are made with a general purpose finite element code and available experimental and

analytical data. An experimental investigation addresses practical issues, such as circuit

design and implementation, associated with piezoelectric sensing and actuation of

composite laminates. Composite specimens with piezoelectric transducers were designed,

constructed and tested to validate the higher order theory. The composite specimens were

tested at various stacking sequences, debonding lengths and gains for both open and closed

loop cases.



Followingaretileprincipalobjectivesof theproposedresearch.

. Develop a new mathematical analysis technique using the higher order theory for

modeling smart composite laminates with embedded/surface bonded piezoelectric

actuators and sensors. The model is accurate, general in nature and computationally

efficient. The equations of motion include piezoelectric sensing and actuation for

controls design.

2. Extend the capabilities of the developed model to include debonded actuators.

. Correlate the developed mathematical model with published analytical and

experimental data and results using a general purpose finite element code.

, Perform an experimental investigation to address practical issues such as smart

composite laminate construction, implementation of the developed control law and

vibration testing. Correlate the experimental results with the higher order theory.



3. Mathematical Model Development:>,_: : _ :_ :

A general theory is formulated to analyze composite laminates with piezoelectric

sensing and actuation in this chapter. The theory is extended to account for debonding.

When a piezoelectric elernent is stressed mechanically, it generates an electric charge. If the

electrodes are not short circuited, a voltage associated with the charge appears.

Conversely, when a piezoelectric element is stressed electrically by applying a voltage, its

dimensions change. By incorporating piezoelectric materials into structures, they can be

used as sensors and actuators to alter the static and dynamic response of the structure. The

basis of the mathematical theory presented in this dissertation to investigate these "smart

structures" is developed through the constitutive laws which govern piezoelectric materials

and composite laminates. The constitutive laws are then implemented using the higher

order laminate theory which is extended to account for debonding. The state space control

equations are used to develop the control systems and the finite element method is used to

implement the developed theory so that practical structures can be analyzed.

3.1 Piezoelectric and Laminate Constitutive Relations

The objective is to utilize the macroscopic properties of piezoelectric materials by

integrating them as elements of smart composite structures for both sensing and actuation.

To achieve this, it is first necessary to present the electro-mechanical constitutive

relationships. These equations relate stress, strain, charge and electric field of a

piezoelectric material. They are derived flom the electric enthalpy density function as

follows and were first formalized by Voigt (1928).

H(Eij,Ei)= 1 1_CijklEijEkl --eijkEiEjk -- kijEiE j i,j,k,l = 1,2,3 (3.1.1)

where Eij and E i are components of the strain tensor and electric field vector, respectively

and Cijkl , eij k and kij are the elastic, piezoelectric and dielectric permittivity constants,

respectively. All material constants are assumed to be isagric (measured at constant electric
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field). It must be noted that repeated indices indicate summation. The charge and stress are

determined as follows.

OH

Di - c3Ei (3.1.2)

o_H
oij = _ (3.1.3)

It must be noted that there are only six unique values of the stress and strain tensors due to

symmetry. Therefore, the following notation is used to define these quantities.

"(Yl [ rGxx 1 "El exx
0" 2 O'yy / E 2 Eyy

G3 = O'zz_ E3 Ezz

G41  yz] E4 -- 2gyz
or5 Gxz g5 2gxz

.0" 6 O'xy .g 6 2gxy

(3.1.4)

where x, y and z correspond to the 1, 2 and 3 directions in the tensor relationships.

Further details of the piezoelectric constitutive relationships are found in the following

sections and in Appendix A.

3.1.1 Composite laminates: Consider a composite laminate which is constructed from

layers of both orthotropic (transversely isotropic) and piezoelectric materials as shown in

Fig 1.1. The piezoelectric coupling coefficients and the electric terms are set to zero for the

nonpiezoelectric layers. Equation 3.1.2 is discarded and Eqn. 3.1.3 reduces to the familiar

Hooke's law.

(Yik = Qijkgjk (i,j = 1,2,'",6) (3.1.5)

where (_ik are the stresses, _Jk are the strains and Qijk are the elastic stiffness coefficients

defined in the material coordinate system for the k-th layer. Stresses and strains in the

global coordinate system for the k-th layer ((J'ik and eJk ) are related as follows.
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(i, j ± 112;-..,6) ...................................... (3.1.6)

where, in matrix form,

Qk = Tk-lQkTk

and

T k =

ill 2 i12 0 0 0 2 mn

112 m 2 0 0 0 -2ran

0 0 1 0 0 0

0 0 0 m -n 0

0 0 0 n m 0

-ran -mn 0 0 0 m 2-n 2

(3.1.7)

(3.1.8)

where m = COS0k, n = sin O k and Ok is the angle of rotation about the Z axis between the

global and material coordinate system for the k-th layer (Fig. 3.1). Furthermore, for

orthotropic (transversely isotropic) plies, only five independent elastic coefficients remain

and the transformed elastic stiffness matrix is as follows. The exact formulation of the

elements of Qk are readily found in texts on composite materials (Vinson and Sierakowski;

1987: Agarwal and Broutman; 1990).

Qk =

Qll Q12 0 0 0 QI6

Q12 Q22 0 0 0 Q26

0 0 0 0 0 0

0 0 0 Q44 Q45 0

0 0 0 Q45 Q55 0

QI6 Q26 0 0 0 Q66

(3.1.9)
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Fig. 3.1 Composite laminate with piezoelectric layer.
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3.1.2 Piezoelectric materials': Now consider the plies introduced in to the composite

laminate which posses piezoelectric properties. Differentiating Eqns. 3.1.2 and 3.1.3 and

utilizing the symmetry of the stress and strain tensors as before yields the following

expressions.

D i =eij_ j +kikE k i =1,2,3 (3.1.10)

G i = Cijg j --ekig k i = 1,2,...,6 (3.1.1 1)

Using the relationship

eij = dikCkj i = 1,2,3 j = 1,2,...,6 (3.1.12)

the above relationships are represented as follows.

D i = dijCjkg k + kimE m i = 1,2,3 (3.1.13)

(5"i =Cij_j-CikdkrnE m i=1,2,...,6 (3.1.14)
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The piezoelectyic!?0ate!ii.a[st!sedj0 t!aiswork areassumedto beeitherPZT (piezoceramic)

or PVDF (piezopolymeric).Bothof thesematerialsdisplayorthorhombicmm2symmetry

for whichthepiezoelectriccoefficientscontainedin dij (in matrix form'

0 0 0 0 d15 0 [
d = 0 0 0 d24 0 0

d31 d32 d33 0 0 d36

are as follows.

(3.1.15)

These piezoelectric materials are also isotropic in the context of laminate theory and are

therefore independent of material orientation. Therefore, converting to matrix notation,

Eqns.3.1.13 and 3.1.14 are written as follows.

0 0

0 0

°oD2 = 0 d24

D3. k dl 5 0

0 0

kll

+ 0

0

d31 T-Q11

d32 Q12

d33 0

0 0 0

0 0 0

d36 0 0

k22 0 E 2

0 k33 k E3 k

m

QI2

Q22

0

0 0 0 0

0 0 0 0

0 0 0 0

0 Q44 0 0

0 0 Q55 o

0 0 0 Q66

b21

E2

E3
i

E4

E5

.g6 _ (3.1.16)

'0.1

0.2

0" 3

0"4

0"5

0"6

--- m

Qll QI2 0 0 0 0

Q12 Q22 0 0 0 0

0 0 0 0 0 0

0 0 0 Q44 0 0

0 0 0 0 Q55 0

0 0 0 0 0 Q66

El

E2

E2

E4

g 5

k-E6 k

0 0 d31

0 0 d32

0 0 d33

0 d24 0

d15 0 0

0 0 d36

[E,]E2

E3 k

k

(3.1.17)

The above constitutive relationships are quite cumbersome in their general form. It is

appropriate to simplify them in the context of the current research as follows. When a

piezoelectric layer is used as a sensor, no electric field is applied (Em=0). Furthermore, the

charge of interest (D3) is normally collected on electrodes located on the upper and lower

surfaces of the piezoelectric layer while the charge in the in-plane directions are ignored due
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to the geometry of the piezoelectric layer as shown in Fig. 1.2. This charge (D3), which is

determined for the k-th ply from Eqn. 3.1.16, is now reduced to the following form.

D3k =[d31 d32 0 0 0 d36]k

QII Ql2 0 0 0 0

Q12 Q22 0 0 0 0

0 0 0 0 0 0

0 0 0 Q44 0 0

0 0 0 0 Q55 0

0 0 0 0 0 Q66

El

E2

83

84

g5

E6_ k

(3.1.18)

The above equation represents the charge resulting from an applied force to the piezoelectric

material and is referred to as the direct effect. A piezoelectric layer can also be used as an

actuator. That is, an induced strain results from an applied electric field. Normally, the

electric field is applied through the thickness of the piezoelectric layer used as an actuator

and the constitutive relationship (Eqn. 3.1.18) is simplified as follows.

(71

(72

(73

(74

(75

.(76

QI1 Q12 0 0 0 0

Q12 Q22 0 0 0 0

0 0 0 0 0 0

0 0 0 Q44 0 0

0 0 0 0 Q55 0

0 0 0 0 0 Q66

-81 -d31

82 d32

g 3 0

84 0

_5 0

- g6- k 1-d36

E3k (3.1.19)

This is known as the converse effect.

_2_ ..._._ Pi.ezTl_i tloirClDier

Fig. 3.2 Piezoelectric layer
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3.2.1 Higher order displacement field:

describes deformation in the composite laminate is defined as follows.

U(x,y,z) = u(x, y) + (z - c)(-_x w(x,y) + _x(X,y))

+ (z - c)2 u2(x,y) + (z- c)3 u3(x,y)

V(x, y, z)= v(x,y)+ (z- c)(-_y w(x, y)+ qby(x, y))

+ (z- c)2 v2(x,y) + (z- c)3 v3(x,y)

W(x,y,z) = w(x,y)

The general higher order displacement field which

(3.2.1)

where U, V and W are the total displacements (Fig 3.3), u, v and w denote the midplane

displacements of a point (x,y), the partial derivatives of w represent the rotations of

normals to the midplane corresponding to the slope of the laminate and _)x and (l)y represent

the additional rotations due to shear deformation about the y and x axes, respectively. The

quantities u2, u3, v2 and v3 represent higher order functions. The thickness coordinate, z,

is measured from the global midplane of the laminate and c is the local midplane where c =

0 for a laminate with no debonding present. This displacement field has the advantage of

easily reducing to the well known classical theory if the higher order terms are eliminated.

This particular form of the displacement field has desirable properties for the finite element

implementation as discussed in Appendix B. In the current work, assuming that

displacements and rotations are small, a linear relationship for the kinematic equations is

used.

3v

EI=-_- x, g2-c)y, e3=0

3V 3w 3U 3w 3U 3V

e4=-g-z ay' %=-gT+ax ' e6=- y+ax

(3.2.2)

where el-e6 represent the linear strains as before.
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Fig. 3.3 Smart composite plate incorporating piezoelectric layers.

In the general form presented above, the higher order displacement field does not

necessarily satisfy the requirement that the transverse shear stresses vanish on the free

surfaces of the laminate. In addition, the displacements in the portion of the laminate where

a debonding is assumed to be pre-existing must be independent to account for the slipping

and separation which occurs at the debonding. These concepts are addressed in the next

section.

3.2.2 Refined displacement fields to incorporate debonding: Consider the cross section of

a debonded smart composite shown in Fig. 3.4. The entire structure is divided into three

regions (Fig. 3.4b)including the nondebonded region (12u), the region above the

debonding (_dl)and the region below the debonding (f_d2). An interface region (S)is

also defined where the nondebonded region (_u) and the debonded regions (_qdl,_a2)

are joined. The presence of debonding requires that the transverse shear stresses, c54 and

c_5, vanish not only on the plate top and bottom surfaces, but on the debonded surfaces in

the debonded region as well. That is,

(x,y) _ 1"2r (r = u,dl,d2)

(x,y) _ f2 r (r = u,dl,d2)
(3.2.3)

where
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b r [-h/2J' (x'Y)_r' r=u 'nondebondedregion)

{ar}br = {h/2}hl , (x,y) E_ r r=dl (abovedebonding)

{ar;:,h,}brJ {-h/2' (x'Y) c_r r=d2(belowdebonding)
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(3.2.4 a-c)

For orthotropic

corresponding strains be zero on these surfaces. Therefore,

E;4(x,y,ar) =0, _;4(x,y, br)=0 (x,y) EX'_r (r=u,dl,d2)

e5(x,y,ar) =0, es(x,y, br)=0 (x,y) e_ r (r=u, dl, d2)

plates, these conditions are equivalent to the requirement that the

(3.2.5)

Three independent refined displacement fields are obtained by applying these boundary

conditions for each region (f2 r, r = u,dl,d2) which allows several of the higher order

functions to be identified in terms of the lower order functions as follows.

ur =u r+(z_cr)( -- 3wr / 4+,: _(z__r)3)2':0x 3(d r

vrVr+ ZOr//r/ Cry34
----_--y +(_y -- 3(2r)2(_;

W r = w r

wh_rec_-(a_+b_)
2

(r = u,dl,d2) (3.2.6)

is the local midplane and d r b r - a r is the thickness of the region

as shown in Fig. 3.5.
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Fig. 3.4 Smart composite cross section including debonding.
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Fig. 3.5 Local region plate geometry.

3.2.3 Continuity conditions: Additional boundary conditions must be imposed to ensure

continuity of displacements at the interface of the nondebonded and debonded regions (S)

shown in Fig. 3.6. A vector of the displacements is constructed to simplify formulation of

the boundary conditions as follows.

U r = V r (1= u,dl,d2) (3.2.7)

W r

The continuity conditions at the interface of the nondebonded and debonded regions (S),

are imposed as follows.

Uu=udl adl<z<min(bu,b dl) (x,y) eS (3.2.8)

UU =ud2 maxla",a t2) < z < bd2 (x,y) _ S (3.2.9)
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The above equations can be satisfied exactly for the classical theory since the displacement

distribution through the thickness is linear. However, the displacement distribution using

the refined theory is nonlinear and must be satisfied in an average sense as follows. An

error function vector for the first of the above equations is formulated as follows.

e=UU-U d! a dl <z-<min(bdl,b d2) (x,y)_S (3.2.10)

where a and b are the limits of the interval given in Eqn. 3.2.4 a-c. It is desired to minimize

the difference between U u and U dl at each point through the thickness in S. This can be

accomplished by first integrating the square of the error through the thickness as follows.

b

E f(eWe)dz
a (3.2.11)

where a and b define the limits of integration through the thickness as indicated in the

interval given in Eqn. 3.2.4 (b). These integration limits must be considered carefully

since the presence of surface bonded actuators/sensors may change the dimensions of the

laminate in any of the regions. It is desired to find a relationship between the independent

displacement functions in f2 dl and fld2 which minimizes the error in terms of the

displacement functions in the nondebonded region to satisfy the continuity conditions.

Therefore, derivatives of E are taken with respect to the independent functions in _dl and

are set to zero as follows.

3E 3E 3E
-- _ 0

3u dl 3v dl 3w dl

3E 3E

0(0wdl/-- 0(_wdll=0 (3.2.12,

_. 0x ) kay )

3E 3E
=0

a_dx I -- 0(_dyl
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Taking derivatives and rearranging the above equations lead to tile following relationships

which satisfy the continuity conditions.

r)aw uur=uu+(cU_c,--aT-x+

vr=vU+(cU-cr/0wU 4--riu'0y __O¢ qly

W r _ W u

Ow r Ow u

3x Ox

3w _ 3w u

Oy Oy

r u

+ 13@x (3.2.13 a-g)

qbr r u

; _ r u'Y Cy

where r=dl and the above relationships correspond to regions £2u and t-2dl . Tile constants

ctr, 13rand Tr are as follows.

U.r = (- 4a 4 - 36a3b - 60a2b 2 _ 36ab 3 - 4b 4 + 36a2(cU) 2 + 68ab(cU) 2 + 36b2(cU) 2 + 52a3c r +

228a2bc r + 228ab2c r + 52b3c r _ 72a2cUc r _ 136abcuc r - 72b2cuc r _ 140a(cU)2c r -

140b(cU)2c r - 156a2(cr)2 - 388ab(cr)2 - 156b2(cr)2 + 280acU(cr) 2 + 280bcu(cr) 2 +

140(cU)2(cr) 2 + 140a(cr) 3 + 140b(cr) 3 - 280cu(cr) 3 - 27a2(du) 2 - 51 ab(du) 2 -

27b2(du) 2 + 105acr(du) 2 + 105bcr(du) 2 - 105(cr)2(du)2)/(3(9a 2 + 17ab + 9b 2 -

35ac r - 35bc r + 35(cr)2)(du)2)

13r= (18a 2 + 34ab + 18b 2 - 35ac u - 35bc u - 35ac r- 35bc r + 70cucr)(dr)2/(2(9a2 + 17ab +

9b 2 - 35ac r - 35bc r + 35(cr)2)(du)2)

Tr= (- 30a3c u - 110a2bc u - 110ab2c u - 30b3c u + 72a2c u2 + 136ab(cU) 2 + 72b2(cU) 2 + 30a3c r

+ 110a2bc r + 110ab2c r + 30b3c r + 56a2cucr + 168abcUc r + 56b2cUc r - 280a(cU)2c r

- 280b(cU)20 - 128a2(cr)2 - 304ab(cr)2 - 128b2(cr)2 + 140acu(cr) 2 + 140bcu(cr) _-+

280(cU)2(cr) 2 + 140a(cr) 3 + 140b(cr) 3 - 280cu(cr)3 - 18a2(du)2 - 34ab(du)2 -

18b2(du) 2 + 70acr(du) 2 + 70bcr(du) 2 - 70cr2(du)2 + 18a2(dr) 2 + 34ab(dI) 2 +
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where r=d 1.
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18b2(dr)2 - 35acu(dr)2 - 35bcu(dr)2 - 35acr(d,)2 - 35bcr(dr)2 + 70cucr(d")a)/(2(9a 2

+ 17ab + 9b 2 - 35ac r - 35bc r + 35(c")2)(du) 2)

(3.2.14 a-c)

Identical expressions corresponding to regions _u and _-_d2 are similarly

formulated by setting r = d2 in Eqns. 3.2.13(a-g) It is also required that continuity of

velocities be maintained between _u and _2d2. These conditions are obtained by simply

differentiating Eqns 3.2.13 (a-g) with respect to time. Since the formulation for the

geometric parameters is independent of time, they remain unchanged. Multiple debondings

can be easily be incorporated into the developed theory by defining additional regions of

debonding at arbitrary locations in the laminate.

T
h/2

l

UU=u dl] J
_---_/
[--.-+/lr jd 1
L_./_

/
I d2....... _J n d2

Fig. 3.6 Displacement distribution in cross section.

3.3 Laminate Stress Resultants

The laminate stress resultants, which include effects due to piezoelectric actuation, are

formulated by integrating the stresses through the thickness as follows.

h/2 hi2 hi2

Ni= J'o'idz, Mi= fzoidz, Pi= fz30"idz (i=1,2,6) (3.3.1)

-h/2 -hi2 -h/2

h/2 hi2

(QI,Q2) = f(o5,_4)dz, (R1,R2)= f(o5,G4)z2dz (3.3.2)

-h/2 -h/2

The first three of the above terms (Ni, Mi and Pi) are the in-plane terms which are

decomposed into two components as follows.
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M i=MA-MI ' (i=1,2,6) (3.3.3 a-c)

pi=pA--p P

The first terms on the right hand sides of the above equations (superscript "A") represent

the resultants flom the actual strain field while the second terms (superscript "P") represent

the resultants from the piezoelectric actuation. These in-plane terms, as well as the

transverse shear terms (Qi, Ri i=1,2) are the laminate stress resultants and are discussed in

the following sections.

3.3.1 Non-piezoelectric stress resultants: It is worthwhile to write the terms from the actual

strain field in terms of the elastic constants and strains as follows.

hi2

,M,,pi,)=  ,z,z )Uj  dz0,J=
-h/2

where Qij contains the elastic constants and the strains, _j, are defined in Eqn. 3.2.2.

Since the material properties may differ between plies, it is necessary to replace the

continuous integrals in the above equation by the summation of integrals representing the

contribution of each layer as follows.

I hf( }

N 3 --

(NiA'MA'pA')=£k=I 1,Z,Z )QijkEjdz (i,j= 1,2,6) (3.3.5)

Lhk-1

It is convenient to write the in-plane strains in terms of their respective midplane strains and

curvatures as follows.

gl----gO q_ZK0 q_Z3K2

IE2 = g0 + ZK0 + Z3K2 - (3.3.6 a-c)
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0 zK ° + Z 1<6g6 =g6+ 3 2

where

e0 _u K0 _ Oqbx 02w 1<2_ 4 O*x
= _'-7' 0x 0x 2 ' 3h 2 0x

OV O(])y O2W K2_ 4 _y

0 OU 0V 0 O_)x t- Oqby __ 2 02w
c6 = _-7 + -_-x' K6 - Oy _---7- Ox0----7'

4(<
'_6=377t-aTy+ ax)

(3.3.7)

The sumrnation and integration in Eqn. 3.3.5 can now be carried out, allowing it to be

written in matrix form as follows.

Nl3 = ABaB (3.3.8)

where

N_-[_i_ _ P;']_ (i = 1,2,6) (3.3.9)

The quantity AB is the laminate stiffness matrix and EB is the generalized strain vector.

The laminate stiffness matrix is obtained by integrating the elastic constants through the

thickness of the laminate, ply by ply and summing the result as follows.

[ai,l [ i,l ll (i,j = 1,2,6) (3.3.10)

where

Aij, Bij, Dij, Eij
Ihi l

Fij'Hij' ) = _N _i.(1,z, z2,z3,z4,z6]dz
' z__Ck=l ] a J' , [

(i,j=1,2,6) (3.3.11)
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The generalized strain vector, oR, is formulated using the definitions in Eqns. 3.3.7 as ................

follows

ct_=[co 1<o _:2] T (i=1,2,6) (3.3.12)

Notice that the z-dependence is eliminated from the generalized strains by shifting this

dependence to the formulation of the laminate stiffness matrix.

The quantities Qi and Ri (i=1,2) arise due to transverse shear which is present in the

laminate and are accounted for by using the higher order laminate theory. As before, these

stress resultants are written in terms of the elastic constants and strains as follows.

hi2

(Q,,R,) = f (1,32){Q54c4 + Q55c5 }dz (3.3.13)

-h/2

h/2

(Q2,R2) = : (1, z2){Q44_;4 + Q4,F-.5 } dZ (3.3.14)

-h/2

where Qij contains the elastic constants and the transverse shear strains, e4,5, are defined

in Eqn. 3.2.2. Since the material properties may differ between plies, it is again necessary

to replace the continuous integrals in the above equation by the summation of integrals

representing the contribution of each layer as follows.

zN 2 --(QI'RI)= k=l 1,z Q54c4+05:5}dz (3.3.15)
h

zN {h!! }
= 1, z2){Q44_;4 + Q45_;5 }dz (3.3.16)(Q2'R2) k=l

h

The transverse strains are also represented by their respective midplane strains and

curvatures.

E 4 = E 0 + Z2K 2
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(3.3.17 a-b)

and

E0 =U21 ' E0 =Ull ' K2 4 4
=--7U21, K_ =--_'Ull

This allows the transverse stress resultants to be written in rnatrix forrn as follows.

(3.3.18)

N T = ATE T (3.3.19)

where

NT =[el Ri] T (i = 1,2)

The laminate stiffness matrix AT is written as follows.

[!A JED,J IA T [Fij]j (i,j = 4,5)

(3.3.20)

(3.3.21)

where

thi (lz z4/t( ] yN'Aij' Dij' Fij' : z-,,_k =1 ij dz

[hk-I J

(i,j = 4,5)

The generalized transverse strain vector is written as follows.

E T =[g 0 K2] T (i =4,5)

(3.3.22)

(3.3.23)

where the definitions for the midplane strains and curvatures are given in Eqns. 3.3.18.

3.3.2 Piezoelectric stress resultants: The second terms in Eqns. 3.3.3 a-c represent the

resultant forces due to piezoelectric actuation and are discussed next. First, these resultants

are represented in terms of the elastic constants, piezoelectric constants and applied electric

field as follows.



(NP,MP,PP,) =

hi2

-h/2
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(i,j = 1,2,6) (3.3.24)

where Qij contains the elastic constants and Aj are the induced strains due to piezoelectric

actuation. Since the rnaterial, piezoelectric and electric properties may differ from ply to

ply, it is necessary to integrate ply by ply and sum the contributions of each ply as before.

rhk ](NiP'MiP'PiP') = Ek=I (1,Z,Z)QijkdjkE3kdZ (i,j= 1,2,6) (3.3.25)

I.hk__

where the piezoelectric constants in the k-th layer are nonzero only for the piezoelectric

plies energized with electric field E3k and expressed as follows.

djk=[d31 d32 0 0 0 d36]kT (3.3.26)

It is convenient to express Eqn. 3.3.25 in terms of the applied voltage rather than the

electric field using the following relationship.

_ Vk

E3 k (hk _ hk_l ) (3.3.27)

Substituting the above expression for the electric field, Eqn. 3.3.25, can be written in

matrix form as follows.

Ihi }N Vk __
k=l (hk -hk-1) QijkdjkdZ

ht. k-I

Z Qij kdj k dz
k=l (hk -_hk'l)

[hk-i

Ii }Ek\, z3 Vk
[.hk_, (hk -hk-1)Qijk djk dz

(i;j = 1,2,6)
(3.3.28)
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....................... iii_sTi%{i_i:aCCical to present Eqn. 3.3.29 in a compact matrix form for the general case. It

must also be noted that the terms in Eqn. 3.3.28 are nonzero only for energized

piezoelectric layers.

In realistic applications, piezoelectric layers are often implemented in symmetric pairs

(Fig. 3.7). Simplification of Eqn. 3.29 is possible if the magnitude of the electric field

applied to each piezoelectric layer is the same. Consider the common case where a

symmetric pair of piezoelectric actuators are implemented and both the magnitude and the

sign of the applied electric field (E3) is the same for each actuator (Fig. 3.7a). This is

known as a unimorph configuration and results in an in-plane force in symmetric laminates.

Eqn. 3.3.28 is then simplified as follows.

l, p,0ilLV ]I 0

where

ai_ ]hik=l Qijdz

{.hk-1

(i,j = 1,2,6) (3.3.30)

The integration in the above equation is carried out only over the piezoelectric layers. The

induced strain due to the piezoelectric actuation is as follows.

A=[d31 dBl 0 0 0 0 0 0 0]TE3 (3.3.31)

Bending moments are produced if one of the symmetric pair of actuators is energized

with an equal, but opposite, electric field from the other (Fig. 3.7b). This case is termed a

bimorph configuration and Eqn. 3.3.28 simplifies to the following.

IIN I1[i0001
L[ P]0 j
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hk-i
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(i,j = 1,2,6) (3.3.33)

Again, tile integratmn is carried out only through the piezoelectric layers and A is identical

to Eqn. 3.3.31. It is helpful to note that the voltage, which must be applied to a

piezoelectric layer to obtain a specified electric field, is calculated as follows

V = E3t (3.3.34)

where V is the voltage and t is the thickness of the piezoelectric layer.

N

+ o.--

+E 3
-

+_--

+E 3 .....
-

piezo actuators

composite lamina

N

o 0

I -E 3o+

+E 3
- 0

M,P

(a) (b)

Fig.3.7 Piezoelectric actuator configuration; (a) unimorph and (b) bimorph.

3.4 Piezoelectric Sensors

Piezoelectric layers are also used as sensors in the current research to detect the strain

and rate of strain in the host structure. The procedure used to develop the piezoelectric

sensor equations is based on work presented by Lee (1990) and Used by Chandrashekhara

and Agarwal (1993). It is extended here for use with the higher order laminate theory.

3.4.1 Sensor relations: When a piezoelectric layer is used as a sensor, a charge appears in

response to the mechanical load. Only the charge in the thickness, or 3, direction (Fig.
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3.2) is of interest. The relationship for this direct effect was obtained in sectmn 3. I and is

repeated here for convenience.

W m

D3k = d k QkEk (3.4.1)

where

d [ =[d31

Qll

Ql2

0
Qk =

0

0

0

d32 0 0 0 d36]k (3.4.2)

m

Q12 0 0 0 0

Q22 0 0 0 0

0 0 0 0 0

0 0 Q44 0 0

0 0 0 Q55 0

0 0 0 0 Q66

(3.4.3)

and

ET =[El g 2 g 3 E 4 g 5 g6] k (3.4.4)

The charge enclosed by the surface S is calculated from Gauss' Law (Lee; 1990) as

follows

= [D • dsq (3.4.5)

S

where q is the charge, D is the electric displacement vector and ds is the differential area

normal vector of S. However, this equation cannot be used directly since the results will

be identically zero due to the fact that the charge within a dielectric is neutral. Since charge

is built up on the surface of a piezoelectric lamina while it is under the action of an external

force field, an equivalent circuit model is used to relate the closed-circuit charge signal

measured from the surface electrode to the force field (Fig. 3.8). The charge built up on

the surface due to the mechanical action is equivalent to the charge stored inside the



36

capacitor of the equivalent circuit. In order for the charge to be measured, the electric loop

must be closed. That is, electrodes must exist on both the top and bottom surfaces of the

piezoelectric layer so that the induced charge can move in the 3 direction. It is assumed that

these electrodes cover the entire upper and lower surfaces, respectively, as shown in Fig.

3.8 and are short circuited to measure the charge built up. Neglecting edge effects and

assuming that the sensor layers are thin, the charge built up corresponding to a sensor in

the k-th layer is approximated as follows.

qk = D3k__ dS + D3kdS (3.4.6)

Z=Zk_l k S JlZ_Zk

where S is the area of the sensor electrodes which is assumed to be the same on the top and

bottom of the sensor layer and equal to the area of the sensor patch. Substituting the

expression for D3k into the above equation yields the following.

If T-- f _;k]dS t (3.4.7)
qk = _ dkQk [Ek-1 -b

S

The strains are written in terms of the derivative operator matrix, H k and the vector of the

unknown displacement functions, u as follows.

qk = dTQkfHk udA (3.4.8)

A

where
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H k =

44]d3h 2 ) x

0 0

0 0

dy

0 0 0

0 0 0

(0 l-h2 ) 0

dy (z_ 4Z3o- 3--_-Jdy dx

zI _ 4zg3---_-Jd y

h2 )
0

0

z _ 4z30 ]d x

u_-[u,x v ,y w]

-zldyy

0

0

0

-2zldxy
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(3.4.9)

(3.4.10)

and

1

z I = -_-(Zk_ 1 + Zk)

1 (Zk_12 + Zk2 )zo_=_

1 (Zk_13 + Zk3 )z_=_

0 0

dx = Ox, dy =_y,

(3.4.11)

(3.4.12)

(3.4.13)

2 2

dxy - OxOy (3.4.14)

The charge due to mechanical deformation at any given moment is related to a voltage

which can be measured as follows.

Vk(t) - qk(t) (3.4.15)
Ck

where Ck is the capacitance of the piezoelectric layer (Fig. 3.8). This measured voltage is

proportional to the strain in the sensor at any given time. The current produced is obtained

by differentiating the charge with respect to time as follows.
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(3.4.16)

Thecurrentis proportional to the strain rate.

3

1

F

2

Z=Z k

electrodes

(top and bottom)

Z=Zk_ 1

F

piezoelectric seng0r equivalent circuit

Fig. 3.8 Equivalent circuit for piezoelectric sensor in k-th layer.

Sensor circuits: The ultimate goal of implementing piezoelectric sensors is to obtain a

signal, in the form of a voltage, which is proportional to either the strain or strain rate

present in the structure. This is accomplished by connecting the piezoelectric sensors to

op-amp circuits which can then be coupled to either a data acquisition system or a feedback

control loop. Strain measurements are accomplished through the use of a charge amplifier

shown in Fig. 3.9. The output voltage, v0 is calculated as follows.

Vo(t) _ q(t)
Cf. (3.4.17)

The circuit must be designed around the lower and upper cutoff frequencies given as

follows.

fl __ 1
cp 27zR fC f (3.4.18)

f2 _ 1
cp 2rcR1C (3.4.19)
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where flcp and f2p are the lower and upper cutoff frequencies, respectively. The feedback

capacitor, Cr, is chosen to match the capacitance of the piezoelectric sensor, C. Once the

cutoff frequencies are determined, R1 and Rf are obtained from Eqns 3.4.18 and 3.4.19.

equivalent piezo sensor circuit

R 1

;o I /X/X

>
>

Cf

charge amplifier

Fig. 3.9 Piezoelectric sensor circuit for strain measurement.

Vo

A transimpedance amplifier (Fig. 3.10) is used to convert the sensor current, which is

proportional to the strain rate, to a voltage which can then be used by the measurement

instrumentation. The output voltage, Vo, is proportional to the sensor current, i, as

follows.

Vo(t) = -R2i(t) (3.4.20)

v o =-R2i (3.4.21)
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equivalent piezo sensor circuit

ii:
CT2

0

0

e 2

transimpedance amplifier

_L

Vo

Fig. 3.10 Piezoelectric sensor circuit for strain rate measurement.

3.5 Equilibrium Equations and Boundary Conditions

A variational approach using Hamilton's principle is used to derive the equilibrium

equations and boundary conditions for a nondebonded plate including piezoelectric

actuation. The formulation can easily be extended to debonded plates by specializing the

following analysis to each region (g2r,r=u,dl,d2). In the absence of any

nonconservative forces, Hamilton's principle is stated as follows.

t2

aJ[T- (v + U)]dt =0 (3.5.1)

tl

where T is the kinetic energy, V is the potential energy due to external forces, U is the

strain energy and tl and t2 are the initial and final times, respectively The detailed

derivation of these quantities are presented in the following sections.

3.5.1 Potential energy formulation: The elastic strain energy, U, is calculated by

integrating the strain energy density, U0, over the volume of the laminate as follows.
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u=_
-h/2A

11/2

=- O'le 1 q- (Y2E2 +O'3E 3 + (Y4E4 + (Y5E5 + (Y6_;6]dAdz
2

-h/2 A
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(3.5.2)

The variation of the potential energy is obtained as follows

h/2

8U= f f(CylSEl+(Y28£2+cY48£4+cY5_Sg5+o'68E6)dAdz

-h/2 A

(3.5.3)

It is noted that the transverse normal strain associated with the assumed displacement field

(Eqn. 3.5.2) is zero. Hence, the admissible virtual strain is also zero, making the term

O-38g3 = 0 in Eqn. 3.5.3. On the other hand, (s3 is assumed to be negligible by using the

plane stress assumption. Integration through the thickness and substitution of the

expressions for the variations in the strains, obtained from Eqn. 3.2.2, yields the following

expression.

08U 08(_x _28W -- P1
8U= Na-_x + M1 Ox Ox 2 3h 2 Ox

] 4 38(_y
+ N2 38v M2 08_)y 328w - P2

07-+ 0y 0y 2 3h 2 0y

4 4

+ Q2a(_y - R 2 3_12 a_)y + QlS_x - R 13--_ 8(Px (3.5.4)

N6(aau +aav] (aa_x
+ bTy --aT)+M6 -a7

-P6 3h 2 _ 3y dA
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where N i, M i and Pi (i=1,2,6) and Qi and Ri (i=1,2) are the laminate stress resultants

which are defined in Eqns. 3.3.3

The potential energy due to an applied distributed load is formulated as follows.

V = f p(x, y)U 3dA

A

(3.5.5)

where p(x,y) is the distributed load. Upon substituting the appropriate expression for U3,

taking the variation of V yields the following expression.

(3V = [p(x,y_wdA (3.5.6)
A

3.5.2 Kinetic energy formulation: The kinetic energy, T, is calculated by first considering

the kinetic energy of a system of particles relative to an inertial frame of reference (Fig.

3.11)

n

• m,v .v 
i=l

where Vi is the absolute velocity of the i-th particle.

Vi = vi q- (&"_i X ri) (3.5.8)
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\
\

\ v.
\ 1

ri m.
1

0

X

Fig. 3.11 Particle relative to inertial frame of reference.

In the context of laminate theory the rotational velocity term (£'_i X r i) is much smaller than

the transitional velocity term (vi).

n

T -;E= miv i • v i

i=l

Therefore, it is appropriate to retain only vi.

(3.5.9)

Summation of all of the infinitesimally small particles throughout the laminate allows the

sum to be represented as an integral over the volume of the laminate as follows.

T : 2f(v • v)dV (3.5.10)

V

where the transitional velocity, v, is calculated by taking the time derivative of the refined

displacement field. Carrying through the dot product in Eqn. 3.5.10, substituting in terms

from the displacement field and taking the variation of T yields the following expression.

h/2

ST= 1 ff{
-hi2 A
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3.5.3 Hamilton's principle: The variation of the integral in Eqn 3.5.1 is performed as

follows.

t2

fiST- (SV + 5U)]dt = 0

tl

(3.5.14)

The formulations for the variation of the kinetic energy (ST), tile potential energy due to an

applied load (SV) and tile variation of the strain energy (SU) are now substituted into Eqn.

3.5.14. Further integration by parts using Green's theorem yields the following set of

governing equations and boundary conditions.

(_Ul0_

_SU 20 :

_U30"

_Ul I"

(_U21 -

+ II[i+I2 _x 0@ _ 4 i4_+_x
ax ay

ON 6 ON 2 ( O_) 4 ..-I19+I 2 _y-- --
OX 3y 3-_12I4(_y

32M1 32M2 2 32M6
OX 2 } F + p0y 2 3xay

=-I2ii-I 3 _x--_- x +3--_I5'x

--I2i?--I 3 _y---_-y +3--_I5(_y

+I1/9

(3.5.15a-e)

aM 1 0M 6 4 (()P 1 3P6/ 4+ -Q1 +R1
Ox Oy 3h 2 _ Ox --_-y ) h 2

4 ""

= 4 i4)ii+(i 3 __3_____i5)(_x ___/+(__3@2 15

aM 6 { aM 2 4 (OP 6 +_P2 4

o3x 3y 3h 2 _--_-x c3y - Q2 + R2 h 2

=(I2- 3@2 I4)i)+ (I3- 3h4-@Is/(_y- _)+ (-3@2 I5 + 9@4 IT)_y
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The boundary conditions are as follows.

Natural

Nln x + N6ny

specify:

N6nx

(OMI +
-_x -_y6/nx

(M1- 4opl']nx3h_ ]

(M 6 - 4--_P6"]nx3h_ ]

+N2ny

Mlnx + M6ny

Mlnx + M6ny

+ (M6 - P6/ny

4

\

+(M2 - 4 p 2/ny

Essential

ulo

U2o

U3o

a%o

ax

0%0

Oy

Ull

U21

where nx = cos(_), ny = sin(_)) and qb represents the angle tangent to the boundary.

Although the relevant equilibrium equations and boundary conditions are quite lengthy,

important physical interpretation of the contribution of the higher order terms can be

gained. As a check, when the higher order terms are set to zero, the above equations

reduce exactly to those obtained using the classical theory. It must be noted that in the

derivation of the equations of motion, the influence of the electric potential is assumed to be

small and is therefore neglected. In the literature, the treatment of the piezoelectric effects

in this manner is referred to as an induced strain formulation (Mitchell and Reddy; 1995).

3.6 Finite Element Implementation

Application of the higher order theory, including piezoelectric sensing and actuation, to

realistic problems requires that complex geometries and boundaries be incorporated into the

analysis. The logical choice for the solution technique is the finite element method which
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easily accommodates material discontinuities and is well suited for numerical

implementation and solution. The following sections contain details of the finite element

formulation.

3.6.1 Eq_mtions of motion: The displacements in matrix form are presented as follows.

u=[u (3.6.1>

where the subscript "r" corresponds to the nondebonded and debonded regions

(r= u,dl,d2 .... ). In the following development, it is assumed that specialization to each

region is performed when necessary. Therefore, the subscript "r" is dropped. The global

displacements .are represented in matrix form as follows.

U = GLGU (3.6.2)

where u is a vector of the five unknown displacement functions.

u=[u *x v ,y w] _ (3.6.3)

The quantity LG is a derivative operator matrix and G contains the z dependence of the

displacement field. These matrices are defined as follows.

1

0

0

LG= 0

0

0

0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 d x

0 0 0 dy

(3.6.4)
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1 ___3 4 0 0 0 -_ 0
3d 2

0 0 I ___3__4 0 0 -_
3d 2

0 0 0 0 1 0 0
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(3.6.5)

.. :.._

and

0 0 0 2 3 2 3 2
=--, = = dxy - (3.6.6)dx Ox dy =-_-YY' dxx O x2, dyy 3y2, OxOy

g=z-c (3.6.7)

where c is the local midplane and d is the local thickness. Theses quantities vary froln

region to region. The generalized in-plane and transverse strains (Eqns. 3.3.6 and 3.3.17)

are written in matrix form as follows

CB = LBU (3.6.8)

aT = LTU (3.6.9)

where L B and L T are derivative operator matrices. The derivative operator matrices are

defined as follows.

L B =

-d x 0 0 0 0

0 0 dy 0 0

dy 0 d x 0 0

0 d x 0 0 -dxx

0 0 0 dy -dxy

0 dy 0 dx -2dxy
4

0 d× 0 0 0
3d2

4
0 0 0 dy 03d 2

4 4
0 dy 0 d x 03d 2 3d 2

(3.6.10)
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(3.6.11)

The kinetic energy is presented in matrix form using Eqn. 3.5.10 as follows.

T = lfpUTUdV

V

= 2 f p/ITL_GLGfldA

A

(3.6.12)

(3.6.13)

where

= f GTGdz

Z

(3.6.14)

Using Eqns. 3.6.8 and 3.6.9, the strain energy is written as follows

U = IIfeTNBdA

Z{A
+ f 8TTNTdA

A

:1{ fgBTABeBdA-fSTNPdA+feTATeTdAAA A

(3.6.15)

(3.6.16)

Also, the potential energy due to an applied transverse load, p(x,y), is as follows.

V = f UTFdA

A-

(3.6.17)

where

F=[0 0 p(x,y)] (3.6.18)
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Each of the five unknown functions are represented by their corresponding elemental

functions ue(x,y) which are interpolated as follows.

N n

ue(x,y) = ENe(x, y)w e

i=l

(3.6.19)

where Nn is the number of nodes, N e are the interpolation functions and the superscript e

denotes the corresponding parameter at the element level. The quantities w e are the nodal

degrees of freedom defined as follows.

(3.6.20)

3w i 3w i qT

we= Ui _xi Vi _yi Wi 3X 3y J

Bilinear shape functions are used for the first four unknowns while 12 term cubic

polynomials are used for the transverse displacements (w). The derivative terms are

included as degrees of freedom since C 1 continuity is required for the transverse

displacement field. The resulting four noded rectangular elements are nonconforming for

computational efficiency and contain 28 degrees of freedom each.

The elemental (U e) displacements are now represented as follows

U e ,,.-.{ n e _e= tJlJG_
(3.6.21)

where

B eG = LG Ne
(3.6.22)

The elemental generalized in-plane and transverse strains are represented as follows

g_ e e=Bl?W (3.6.23)

= BTW

where

B_ = LB Ne

(3.6.24)

(3.6.25)



B_ = LT Ne
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The elemental expressions for the displacements and strains are now substituted into the

formulation for the kinetic, strain and potential energies. (Eqns. 3.6.12,15,17) Taking the

variation of each quantity yields the following expressions.

8T = 8weTMC@ e

8K = 8weTKew c - 8Fp r

8V = 8weTFC

where

1"
eT~GBGdAe eM e = |B G

Ae

Ke= fB;TA B;dA +
Ae

Fe= f NeTpe(x,y)dA e

Ae

F_, = fNeTNPdA e

Ae

f Br_TATB._dA e

Ae

(3.6.27)

(3.6.28)

(3.6.29)

(3.6.30)

(3.6.31)

(3.6.32)

(3.6.33)

The quantities M e, K e and F e represent the elemental mass and stiffness matrix and force

vector due to a distributed load, respectively. The quantity F_, is the force vector due to the

piezoelectric actuation. The laminate stiffness matrices (AB, AT) are integrated analytically

through the thickness of the laminate, ply by ply and the finite element matrices are

assembled using exact or full numerical integration. It must be noted that reduced

integration and shear correction factors are not needed in the current analysis. According to
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the discretized form of Hamilton's principle where the above quantities are sumlned over all

of the elements, the following must be true

t2 Ne

8FI = ft £[STe - sue + 8veldt = 0
1 e=l

(3.6.34)

where tl and t 2 are the initial and final times, respectively and N e is the number of

elements. Integration by parts and consideration of the arbitrary nature of the variation 8w e

leads to a linear set of equations which are solved for the nodal displacements w.

M@+Kw = F+Fp (3.6.35)

where the quantities M, K, F and w denote the global mass and stiffness matrices, the

force vector due to a distributed load and the nodal displacement vector, respectively. The

quantity Fp is the force vector due to the piezoelectric actuation.

3.6.2 Sensor equations: The charge from the piezoelectric sensors is determined

independent of the finite element equations in post computation calculations since the

electric displacements are not considered as additional degrees of freedom. This leads to a

significant amount of computational savings and is consistent with the current approach

which is an induced strain formulation. The short circuit voltage in the k-th layer is related

to the charge and the displacements as follows.

_ qk _ 1 T fVk
C k C k dkQk o HkudA (3.6.36)

A

where V k is the voltage, qk is the charge and Ck is the capacitance of the k-th layer. The

displacement vector u is represented in terms of the shape functions N e and nodal

displacements, w e , as before. Summing over all elements and plies leads to the following

expression.
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Ne N

v= dkQkH w (3.6.37)

e=l "=

where

m e = (3.6.38)

It is important to note that only the piezoelectric plies which are used in a sensor mode are

to be included in the above sum. The current is determined as follows.

i(t) = dq
dt

Summing over all piies and differentiating yields tile following expression.

Ne N

T --e • e

i(t) : EEdkQkH W

e=l k=l

(3.6.39)

(3.6.40)

3.7 Implementation of Continuity Conditions

One the finite element model has been constructed, it is necessary to implement the

continuity conditions to ensure continuity of displacements at the interface of the

nondebonded and debonded regions (S). For simplicity, consider the simple case where

the displacements in a nondebonded region, (f_u), must be identical to the displacements in

the debonded region, (f2 d) at the interface between these two regions, (S) (Fig. 3.12).

Since the displacements are represented in terms of the nodal quantities in the finite element

implementation, this is accomplished by applying the continuity conditions developed in

Section 3.2.3 on the unknown displacement quantities associated with the nodes contained

in S. These constraints could be applied directly using the Lagrange multiplier technique.

However, this leads to a nonsymmetric set of equations which has very undesirable

consequences in the solution sequence of the finite element model. A more efficient
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approach which retains symmetry of the equations of motion needs to be developed. This

is outlined below.

C LI

1
I
I
I

I

D.u

'1

! t•-- •o-..--..-o- - C d

_2d

S

Fig. 3.12 Finite element discretization of debonding.

The continuity conditions presented in Eqns. 3.2.13 a-g, between the nondebonded

--(_u) and debonded (£2d) regions, are applied to the finite element degrees of freedom at

the interface of the nondebonded and debonded regions (S) by first presenting these

discretized conditions in matrix form as follows.

R_ = 0 (3.7.1)

where

0

0

f/=0

0

0

0

_r 0 0 0 C' 0 --1 0 0 0 0 0 0

dr7 r 0 0 0 0 0 0 -d r 0 0 0 0 0

0 1 _r 0 0 c' 0 0 -1 0 0 0 0

0 0 dr_ r 0 0 0 0 0 0 -d r 0 0 0

0 0 0 1 0 0 0 0 0 0 -1 0 0

dr_ r 0 0 0 d r 0 0 0 0 0 0 -d r 0

0 0 dr_ r 0 0 d r 0 0 0 0 0 0 -d r

(3.7.2)

_TV=[U u Hd] T (3.7.3)

U u =IU u t_u V u _yU W u 0WUax 0wU]Tc3y (3.7.4)

U d :IU d (pdx V d (_ W d OW d OwdlT.

k 3x ay _J
(3.7.5)



c'= cu - cd (3.7.6)

Quantities with superscripts u and d refer to the corresponding quantities contained in S as

well as the nondebonded (f2 u) and debonded (f2d), regions, respectively. The

formulation for o: 13r and 7 r are presented in Eqns. 3.2.14 a-c. It must be noted that to

obtain Eqn. 3.7.1, Eqns. 3.2.13 (d-g) have been multiplied by the thickness of the

debonded layer, d r, for consistency of units. Continuity of velocities mus'_ also be

maintained. Therefore, Eqn. 3.7.2 is differentiated with respect to time to yield the

following expression

R4 : 0 (3.7.7)

Next, the discretized potential energy is reformulated as follows.

V = I(-wTKw + wTF + wTFp) - lplwTRTRv¢ (3.7.8)

where the first term in parentheses on the right hand side of Eqn. 3.7.8 corresponds to the

actual potential energy while the last term corresponds to the penalty term related to the

continuity constraints which has been introduced. Minimization of this penalty term leads

to satisfaction of the continuity conditions. Similarly, the kinetic energy is reformulated as

follows.

T = I@TMw + lp2_vTRTR_, (3.7.9)
2 2

where the first term on the right hand side represents the actual kinetic energy while the

second term is the penalty term related to the continuity constraints. Again, minimization of

this penalty term requires that the continuity conditions be satisfied. The scalar penalty

factors, p I and P2, are chosen to be on the order of the 1-norm of the stiffness and mass

matrices, respectively. According to Lagrange's method for a discrete system,

____( aT / aT aL_ __ + __ = QpC (3.7.10)
0t _.0Clk .) Oqk Oqk
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where qk are the generalized coordinates and Q_C are the generalized forces. The

following symmetric set of augmented equations of motion is Obtained (with Q_C = 0)

[M+P2P]@ +[K +plP]W = F+ Fp (3.7.11)

where P is the penalty matrix corresponding to the continuity constraints be satisfied. It is

obtained first in terms of the nodes contained in (S) as follows.

(3.7.12)

The penalty matrix P is then expanded to correspond to the global degrees of freedom (u)

and has the following form.

R uu ... R ud

R du ... R dd

(3.7.13)p

where

RHU _-

-1 Off 0

_-r 0

1

sym.

0 0

0 0

(zj 0

K r 0

1

c' 0

(zrc ' + _r(dr)2 0

0 c'

0 Ixrc ' + [_r(dr)2

0 0

c '2 +(dr) 2 0

c '2 +(dr) 2

(3.7.14a-b)

+(dr/2( r2+ r2)



7

t dd =

-1 0 0

(dr)2 0

1

sym.

t ud

-1 0

_ix r _,},rdr2

0 0

0 0

0 0

-C' 0

0 0

0

0

0

( r)2

0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

(dr)2 0

0 0 0 0 0

0 0 0 -I3rd r2 0

-1 0 0 0 0

-Off -7rd r2 0 0 -[3rd r2

0 0 -1 0 0

0 0 0 -d r2 0

-c' 0 0 0 -d r2

.. ,c
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(3.7.15)

(3.7.16)

Rji = R T (3.7.17)

3.8 State Space Controls Analysis:

The discretized linear equations of motion to model piezoelectric sensing and actuation

of composite laminates, including debonded, are stated as follows.

M*@+C@+K*w =F+Fp

where

M*=[M+PlP ]

(3.8._)

(3.8.2)

K*=[K+P2P] (3.8.3)

The above matrices are determined from the finite element implementation of the higher

order theory. It must be noted that the viscous damping matrix C has also been introduced.

This damping term arises due to internal friction. A simple damping model is used for



computational efficiency. The

following setof linear equations•

K*w=F+Fp

The undamped open loop frequencies

following eigenvalue problem.

+K*)<--0

static displacements, w,

58

are obtained by solving the

(3.8.4)

and mode shapes are calculated by solving the

(3.8.5)

where c0i are the undamped natural frequencies and (hi are the undamped mode shapes for

the i-th mode.

follows.

The eigenvectors (mode shapes) are combined into a single modal matrix as

¢2 ' CN] (3.8.6)

where N < NDOF, the total number of degrees of freedom contained in Eqn. 3.8• 1. The

mode shapes are orthogonal and are mass orthonormalized as follows•

$iTM * (hi = 1 (3.8.7)

Classical damping, also known modal damping, is assumed (Meirovitch; 1990)• Using

this approach, the undamped and damped mode shapes are identical and remain orthogonal.

The damping matrix also has the following property

di)Tc(I ) = Z (3.8.8)

where

Z = [ 2_1c01

2_20) 2

2_N(0 N

(3.8.9)
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and _i are the damping ratios for the i-th mode. The original discretized degrees Of ................

freedom, w, are represented in term of the mode shapes and modal participation factors as

follows

w = _q (3.8.10)

where q is a vector of the modal participation factors.

[ql

q2

q= q!N

(3.8.1 1)

By pre multiplying the original equations of motion by OT, the modal equations of motion

are written as follows•

Z/l + Aq = _T[F + Fp] (3•8.12)+

where

A = _TK_ = |[ C02

L 4

(3.8.13)

In practice, potentially thousands of degrees of freedom contained in Eqn. 3.8.1 are

accurately represented using just a few modes in Eqn. 3.8.12. The response of the

piezoelectric sensors is now represented as follows•

v = HvO q (3•8.14)

i = HcqSq (3.8.15)

where v is the vector of one or more sensor voltages and Hv is the global sensor matrix

which relates the sensor voltages to the displacements• Similarly, i contains the sensor
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currents which are obtained using the global matrix Hc which relates the sensor currents to

the velocities.

In state space, the above equations are represented in standard form as follows.

+ Bu (3.8.16)

(3.8.17)

where A is the plant matrix, B is the control matrix and C is the observer matrix. The

quantity q contains the modal participation factors, u contains the control inputs and y

contains the sensor outputs.

These quantities are expressed as follows.

A = -Z (3.8.]8)

[° °lB= _T F _TF, p (3.8.19)

C= [Hve Hc*] (3.8.20)

Y=[v T iT ] (3.8.21)

u = (3.8.22)

The first element of the control vector, u, is simply the number one which corresponds to

the external disturbance force vector, F, contained in the control matrix (B). It must be

noted that the quantity F'p contained in B are the control forces per unit volt due to each

piezoelectric actuator. The input voltages to the actuators are contained in u (v_, v_, etc.)
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The voltage inputs are related to the sensor voltage and current outputs for feedback control

through a gain matrix G.

u=Gy (3.8.23)

The standard state space notation used here to represent the equations of motion and the

feedback control allows the effects of piezoelectric sensing and actuation to be used in the

design of a multi input multi output (MIMO) control system

3.9 Implementation of the Finite Element Model:

3.9.1 Laminate discretization: A few words regarding the discretization of the

composite laminate incorporating piezoelectric sensors and actuators for use with tile finite

element model are in order. First, boundaries of the piezoelectric sensors and actuators

must correspond to element boundaries as shown in Fig. 3.13. Although the piezoelectric

sensors and actuators may occupy one or more elements, a single element either does or

does not contain one ore more piezoelectric layers.

Although small meshes can be formulated by hand, the generation of large meshes with

multiple sensors and actuators quickly becomes a daunting task. An automatic mesh

generation procedure to incorporate piezoelectric transducers is essential, although it has

never been discussed in the literature. Therefore, a new mesh generation procedure is

developed which is described in Appendix C.
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Fig 3.13 Finite element discretization of piezoelectric sensor/actuator.

The next issue involves the modeling of debonding. The higher order theory and

corresponding finite element implementation are essentially two dimensional in nature.

Nodes are defined at the laminate midplane. All of the unknown quantities are calculated in

terms of these in-plane nodal values from the finite element solution. However, a

debonding is assumed to occur between two plies at an arbitrary location through the

thickness as well as the in-plane directions. Therefore, it is necessary to define the nodal

points in terms of the thickness (z) direction as well. The regions both above and below

the debonding are also discretized at their corresponding midplanes as shown in Fig. 3.14.

The continuity conditions, as described above, are imposed on the nodes at the interface

between the nondebonded and debonded region (S).
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Fig 3.14 Finite element discretization of debonding

3,9.2 Computational considerations: The mass and stiffness matrices which t_re used in the

finite element solution (FEM) of the static and dynamic equations of motion (M* and K*)

are potentially quite large. Therefore, solution of the equations of motion may become

computationally prohibitive. Some consideration of the form of these matrices leads to a

considerable savings in computational effort. These matrices are in general both symmetric

and sparse. Storage requirements of the entire matrices (dense storage) increases as N 2,

where N is the size of M* and K*. Storage of only the symmetric terms gives some

degree of savings. However, storage requirements of only the nonzero symmetric terms

(sparse storage) increases at a much more manageable linear rate as shown in Fig. 3.15 and

gives a significant savings over other types of storage schemes.

The displacement vector is the unknown quantity in the static equations of motion (Eqn.

3.8.4). The solution to these linear equations is obtained using any one of several standard

iterative technique for solving large sparse symmetric linear systems. The Jacobi

Conjugate Gradient method is selected for this research (Kincaid et al.; 1996). The

generalized eigenvalue problem found in Eqn. 3.8.5 is solved using the Lanczos method

which is most effective for finding a few eigenvalues and eigenvectors of the large sparse

symmetric generalized eigenproblem (Jones and Patrick; 1996).
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The higher order theory, as implemented using the finite element method in this

research, must be correlated with other approaches to ensure its accuracy. Therefore, the

purpose of this chapter is to provide validation studies to access the validity of the higher

order theory for modeling piezoelectric actuation of composite laminates with debonding.

Verification is established for tile fundamental cases of plates with no debonding or

piezoelectric actuation before additional complexity is added. Then, major features of the

new theory, such as piezoelectric actuation and debonding, are introduced. Exact

approaches provide excellent benchmarks to access the validity of the higiler order theory

when available. Experimental data is also very useful for comparison. Other approaches,

such as the Ritz method and commercial finite element codes, such as NASTRAN, provide

useful verification tools as well. Standard isotropic plate problems are used in the first part

of the validation. Material orthotropy is then introduced. Further comparisons are then

presented which include piezoelectric actuation and finally debonding. Comparison of the

current higher order theory with other models is also discussed.

4.1 Fundamental Correlation of Isotropic Plates

4.1.1 Simply supported isotropic plates: In this section, the developed higher order theory

(HOT), implemented with the finite element method, is compared with exact solutions for

the classical laminate theory (CLT), first order shear deformation theory (FSDT) and exact

elasticity solutions. The exact solutions for the CLT and FSDT are obtained according to

standard techniques (Reddy, 1984). A 4x4 quarter plate finite element mesh is used to

generate the static HOT solution while and 8x8 mesh for the full plate is used to obtain the

plate natural frequencies so that anti symmetric modes will not be missed. The test article is

an isotropic, simply supported plate with material properties E = 74.5 GPa and _) = 0.3 and

an applied uniform distributed load shown in Fig 4.1. The plate is analyzed for several
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recorded in Table 4.1 where the nondimensional displacement (w*) is presented at the

middle of the plate and is formulated as follows.

w* = w(a / 2'b / 2)hBE

q0 a4
(4.1.1)

Natural frequencies are presented in Table 4.2where q=q0 is the uniform distributed load.

where the first 10 nonrepeated frequencies are presented. The frequencies are normalized

as follows.

a2 /p -
0)i* ----O)i T14 _ i = 1,2,3 .... (4.1.2)

All theories agree quite well for the static results for thin plates as expected (a/h= 100).

However, significant deviations between CLT and the other theories occur for thicker

plates at lower a/h ratios, even for this simple isotropic example. This is because classical

theory does not take into account transverse shear deformation and is therefore not valid for

thick plates. The FSDT is able to account for a constant transverse shear stress through the

thickness. The HOT, which has the same number of unknowns as the FSDT, allows for a

quadratic variation in transverse shear deformation and predicts a significantly larger

displacement compared to CLT, but agrees with FSDT. The HOT consistently gives a

slightly higher deflection, but never deviates more than 2% from the FSDT. The HOT is

also most accurate for a/b=l since the elements are square. At other a/b ratios, the aspect

ratio of each element is no longer equal to one and the solution is slightly less accurate.

These results indicate that the HOT agrees with exact solutions for CLT and FSDT for thin

plates as it should, but deviates from the CLT while still agreeing with the FSDT for thick

plates.
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Table 4.1 Comparison of normalized center deflections (w*) of simply supported isotropic
plates under uniform distributed load.

b/a a41

2

100

10

5

100

10

5

W:g

CLT FSDT HOT

0.0444 0.0444 0.0448

0.0444 0.0467 0.0471

0.0444 0.0536 0.0541

0.1106 0.1106 0.1119

0.1106 0.1142 0.1155

0.1106 0.1248 0.1262

The normalized natural frequencies are presented in Table 4.2. for the CLT, FSDT, the

exact elasticity solution and the current HOT using an 8x8 mesh. The exact elasticity

solution is obtained by formulating the equilibrium equations, where no assumptions are

made for the displacements, and solving using Fourier series (Srinivas et al.: 1970). The

CLT consistently over predicts the frequencies for this moderately thick plate (L/h=10)

since it neglects transverse shear deformation. The HOT agrees well with both the FSDT

and the exact elasticity solution. The deviation increases with mode number since the mesh

for representing the higher modes is somewhat crude. Errors are within acceptable limits

and never exceed 5% for the modes presented.



: ) _i:: iif::i.: .......Table 4.2 C.omparison"of_normatiz_natural
plates(a/h=I0, b/a=1)

frequencies:6fsimply 'supported

m n CLT FSDT Exacta HOT(8x8)

1 1 0.0963 0.0930 0.0932 0.0922

2 1 0.2408 0.2219 0.2260 0.2192

2 2 0.3853 0.3406 0.3421 0.3304

1 3 0.4816 0.4149 0.4171 0.4100

2 3 0.6261 0.5206 0.5239 0.5004

1 4 0.8187 0.6520 0.6469

3 3 0.8669 0.6834 0.6889 0.7169

2 4 0.9632 0.7446 0.7511 0.7375

3 4 1.2040 0.8896 0.8611

1 5 1.2521 0.9174 0.9268 0.9207

a)From Srinivaset al. (1970)
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isotropic

4.1.2 Static and dynamic convergence evaluation: In this section, convergence of the

finite element model developed for the higher order theory (HOT) is investigated for both

static and dynamic analyses. The test article is a simply supported isotropic plate with a

constant distributed load identical to the one used in the previous section. For both static

and dynamic cases, the HOT is compared to the corresponding exact solution for first order

shear deformation theory (FSDT).

Convergence for the static case is investigated by examining a quarter plate model

where the aspect ratio b/a corresponds to the full plate. In Fig. 4.2, the HOT normalized

displacement results are presented for six meshes ranging from lxl to 6x6 for several

different thicknesses with b/a=l. The displacement is normalized in the same manner as

the previous section. These results are compared to the corresponding exact solutions

using FSDT. In all cases, convergence is very rapid. The 4x4 mesh yields acceptable

results with very little CPU time required. The 6x6 mesh is slightly more expensive, but

yields displacements which are within 1% of the exact solution. The HOT also converges
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very rapidly for b/a=2 (Fig. 4.3). The error is slightly higher since the finite elements are

no longer square, but it does not appear to be significant.

0.07

0.065 -O-- HOT (a/h = 5)

0.06

0.055

0.05

exact (a/h = 5)

exact (a/h = 10)

O.O45

-" exact (a/h = 100)
0.04

I I I I I I

0 lxl 2x2 3 x3 4 x4 5x5 6x6

Mesh size (quarter plate, b/a = 1)
Fig. 4.2 Static convergence for simply supported plate (b/a=]).
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0.16
HOT (a/h = 10)

0.15
-O-- HOT (a/h = 5)

0.14

0.13

exact (a/h = 5)

0.12 exact (aJh = 10)

0.11

0.1

0

Fig. 4.3

v..,.
_" exact (a/h = 100)

I i I I I I

lxl 2x2 3x3 4x4 5x5 6x6

Mesh size (quarter plate, b/a = 2)

Static convergence for simply supported plate (b/a=2).

Next, convergence of the plate natural fi'equencies is investigated as shown in Fig. 4.4

for a moderately thick plate (a/h=10). In this study, a full plate model is used so that both

symmetric and anti symmetric modes are captured. The first five natural frequencies for the

HOT, which are normalized as indicated in the previous section, are presented for mesh

sizes ranging from 4x4 to 12x12. These results are compared to the exact values of the

natural frequencies obtained using FSDT (Reddy, 1984). The 8x8 mesh provides very

good results and the 12x12 mesh results agree with the exact solutions within 1%.
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Fig. 4.4 Convergence of natural frequencies using HOT for a simply supported plate
(b/a= 1, a/h= 10).

4.1.3 Thick isotropic cantilever plates: The higher order theory is now applied to the

problem of determining natural frequency parameters for moderately thick and thick

cantilever plates to determine its accuracy. Dimensions of the cantilever plate are presented

in Fig 4.5 and the material properties are identical to those used in Section 4.1. The

frequencies are normalized as follows for comparison with published results.

= coa21/9-_-h (4.1.3)03*

VLJ

where

Eh 3
D=

12(1- 102) (4.1.4)

First, the higher order theory (HOT) is compared to published results for a moderately

thick plate (b/h=20). Results using the HOT are presented in Table 4.3 using an 8x8 mesh.

Results obtained using a Ritz solution with polynomial shape functions and also

NASTRAN results using a standard triangular element are also presented. Aspect ratios of

both a/b=l and a/b=3 are shown for the first eight modes of plate vibration. Agreement
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deviation between the HOT and the other approaches occurs for the sixth mode for a/b=l.

However, the Ritz and NASTRAN results do not agree in this case either so that no

conclusion can be drawn to the accuracy of any of the methods presented for this mode.

NASTRAN appears to over predict the frequency for the eighth mode since both the HOT

and the Ritz approaches agree for this mode. The HOT agrees well with the first seven

frequencies for the plate with an aspect ratio of a/b=3. This is true even for frequencies 4-6

which are closely spaced. The last frequency presented (mode eight) deviates slightly from

the Ritz and NASTRAN solution. Again, the Ritz and NASTRAN results do not agree

either, so no special significance is placed on this small difference.

Next, natural frequencies obtained using the HOT (8x8 mesh) for very thick cantilever

plates are compared to published values for aspect ratios of a/b=l and a/b=2 (Table 4.4).

These published values are obtained using a three dimensional Ritz approach, again with

polynomial shape functions, and NASTRAN results using a standard three dimensional

elements. It must be noted that it can be difficult to choose shape functions for the Ritz

approach for unusual geometries and the three dimensional NASTRAN results are very

expensive to obtain due to the large number of degrees of freedom required. The HOT can

be easily used with complicated geometries with far fewer degrees of freedom since it is a

two dimensional modeh The HOT agrees very well with the Ritz and NASTRAN results

for both aspect ratios. The largest deviation occurs in the seventh and eighth modes of the

plate with an aspect ratio of a/b=2. These frequencies are slightly over predicted by the

HOT.

The results presented in this section correlate cantilever isotropic plate natural

frequencies obtained using the HOT and published values. These frequencies agree very

well in most cases. Small deviations occur in a few cases, but often the published values

disagree as well. Therefore, confidence is obtained that the HOT correctly predicts



frequencies for cantilever plates, including very thick plates where shear deformation is .....................

significant.

fixed end

Z

Fig. 4.5 Isotropic cantilever plate.

Table 4.3 Normalized natural frequency parameters (m*) for moderately thick isotropic
cantilever plates (b/h=20)

a/b Mode no. HOT a Ritz b NASTRAN c

1 3.465 3.452 3.475

2 8.417 8.504 8.547

3 21.06 21.09 21.42

4 26.73 27.34 27.27

5 30.32 30.07 31.24

6 43.93 46.59 44.42

7 52.17 53.52

8 59.59 59.01 64.66

1 3.233 3.420 3.419

2 20.95 21.25 21.12

3 21.33 22.09 21.38

4 59.99 60.37 60.19

5 64.11 65.40 63.47

6 65.87 67.40 66.42

7 118.01 122.00 120.40

(a) 8x8 mesh using current HOT
(b) Ritz solution using polynomial shape functions (Zienkiewicz, 1977)
(c) NASTRAN using CTRIA2 elements (Ramamurti and Kielb, 1984)
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Table 4.4 Normalized natural frequency parameters (co*) for thick cantilever plates (b/h=5)

a/b Mode no. HOT a Ritz b NASTRAN c

1 3.3565 3.3687 3.3624

2 7.4805 7.3397 7.3941

3 10.985 10.984 10.943

4 17.890 17.694 17.672

5 22.644 23.688 22.148

6 24.47 24.999 23.950

7 26.185 26.234 26.227

8 29.733 29.388 29.187

1 3.384 3.3397 3.411

2 13.493 12.459 13.283

3 14.602 14.390 14.452

4 20.375 19.596 20.364

5 42.735 38.771 41.908

6 52.295 52.282 52.334

7 53.937 52.469 53.483

8 56.527 54.814 54.737

(a) 8x8 mesh using current higher order theory
(b) Ritz solution using polynomial shape functions (McGee and Leissa; 1991)
(c) 14x14x3 mesh using MSC/NASTRAN CHEXA elements (McGee and Leissa; 1991)
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4.2 Fundamental Correlation of Orthotropic Laminates

In this section, the higher order theory (HOT) is compared to several existing theories

to determine the accuracy of displacements, stresses and natural frequencies. Static

displacements and stresses are correlated first. Next, the accuracy of natural frequencies

predicted by the HOT are investigated and mode shapes are discussed.

4.2.1 Static ewtluation: Tile test article for static evaluation is a simply supported plate with

dimensions shown in Fig. 4.1. However, now a sinusoidal distributed load is applied and

the plate is constructed of a three ply [0o/900/0 °] orthotropic laminate with ply thickness t =

h/3. The aspect ratio of the laminate is a/b=3 and material properties are as follows.

Ej = 25 GPa, E2 = 1 GPa, l)12 = 0.25, G23 = 0.2 GPa, G]3 = 0.5 GPa, G j2 = 0.5 GPa,

The static results due to an applied sinusoidal load using the HOT are compared to four

existing theories for analyzing composite laminates. The first of these theories is an exact

elasticity solution for cross ply laminates formulated by Pagano (1970) (Exact). The

second theory is an exact solution to an alternative form of the higher order theory (Reddy,

1984) (HSDT). The last two theories are the first order shear deformation theory (FSDT)

and classical laminate theory (CLT). The transverse displacement predicted by each theory

is evaluated at the center of the plate and is normalized as follows

w* = w(a / 2, b / 2,h / 2) h3E----@× 100
q0 a

Tile stresses are evaluated and normalized as follows.

h 2

(Yl* = CYl(a / 2, b / 2, h / 2) q0a2

(4.2.1)
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h 2

_2" = _2( a / 2,b/2,h / 6) q0a2

h 2

(56* = _6(0,0, h / 2) q0a2

h

04* = 0.4(a / 2,0,0) q0aa

h 2

0.5* -- 0.5(0, b/2,0) q0a2

Results are presented in Figs 4.6 (a-f) for the current approach as well as four existing

theories. The normalized displacements for all theories agree very well for a thin laminate

(a/h--100) as shown in Fig 4.6 (a). However, the displacements predicted by the CLT

depart radically from the true displacement as indicated by the Exact solution for very thick

laminates (a/h=4). This is due to transverse shear deformation which is ignored in the

CLT, but is important to consider in thicker laminates. The HOT agrees very closely with

the HSDT for all thicknesses and differs by a maximum of only 6% from the Exact solution

for the very thick laminate while the CLT solution under predicts the displacement by 82%

in this case. The HOT provides good estimates for the inplane stresses, 0._, 0.2, and 0"6 as

shown in Figs. 4.6 (b-d). Again, all approaches agree well for the thin laminate (a/h=100)

although significant differences are observed for the thicker laminates. Surprisingly, the

well known FSDT noticeably under predicts these stresses for all thicknesses other than

a/h=100, 44% in the worse case. The HOT agrees very well with the exact solution for the

alternate form of the higher order theory (HSDT) and is much closer to the Exact solution

than both the FSDT and the CLT for all inplane stresses. Results for the transverse shear

stresses are presented in Figs 4.6 (e-f) for the HOT, Exact and FSDT solutions. These

stresses are assumed to be zero for CLT and are not presented. All solutions presented for

0 4 in Fig. 4.6 (e) predict similar values at the location where this stress is evaluated.

However, it must be noted that the FSDT predicts a constant value of this stress through

4.2.2 a-e)
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......the thickness_=and,does,not satisfy the requirementthat this stressvanish on the free

surfaces.In Fig 4.6 (f), theHOTunderpredicts(Y5comparedto theelasticitysolution. It

agrees very well with the HSDT and errors compared to the Exact solution are

approximatelyonehalf of thoseusingtheFSDT. The deviation in this case is possibly due

to the fact that the HOT is a two dimensional theory which is used to represent a three

dimensional state of stress while the Exact approach is a pure three dimensional approach.

Over all, the HOT predicts stresses much more accurately than the FSDT or CLT

approaches compared to the Exact approaches. Very close agreement with HSDT is also

observed from which it can be concluded that the HOT can be used to accurately predict

displacements and stresses in more complex laminates where exact solutions are not

practical.
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4.2.2 Dynamic evaluation: Natural frequencies predicted by the higher order theory (HOT)

of an orthotropic composite laminate are investigated for a variety of geometries and

stacking sequences. The test article consists of a four ply orthotropic laminate with

identical material properties as those used in the previous example. The geometry of this

laminate is shown in Fig. 4.5 with one end fixed. The stacking sequence of the four ply

laminate is [+0]s which is defined by a singe variable 0. Each ply is assumed to have

thickness t=h/4. Normalized frequencies using the HOT are compared to frequencies

predicted by NASTRAN using two dimensional, shear deformable CQUAD4 elements

which are based on first order shear deformation theory. Results are also obtained for

classical laminate theory (CLT) which is obtained by setting the higher order terms in the

HOT to zero. All of the results in this section, including CLT, HOT and CQUAD4 were

obtained by the author.

Results to assess the accuracy of natural frequencies for orthotropic laminates using the

HOT are presented in Tables 4.5 - 4.8. Frequency parameters for two different aspect

ratios (a/b=l,2) are presented for several different stacking sequences (0=0 °, 15 °, 30 °, 45 °,

60 ° ) and four different laminate thicknesses ranging from thin to very thick

(a/h=100,25,10,5). Five modes are obtained in each case where the frequencies are

normalized as follows

o.)i* = o.)ia2 _/_ x 10 i = 1,2,3,4,5

where

(4.2.3)

D = Elh3

12(1 _ .012a021) (4.2.4)

Correlation between the HOT and the NASTRAN (CQUAD4) results is very good. In

general, the HOT predicts slightly higher frequencies compared to CQUAD4. The

formulation of the CQUAD4 elements requires shear correction factors and reduced
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xntegration teclmiques which are tricks needed to avoid shear locking beha:y_9!-fo.!: thin .......

elements. These tricks could xesult in an overly "soft" element fox" highly orthotropic

materials, such as used in this example. The mode shapes fox 0=0 ° and a/b=l indicate that

the first five frequencies correspond to the first bending, first torsion, first cambex-, second

camber and second bending modes, respectively. Increasing 0 from 0=0 ° to 0=30 ° results

in a decreased bending stiffness and an increased torsional stiffness. Both the HOT and the

CQUAD4 results display this trend for the bending and torsional fi'equencies as shown in

Tables 4.5 - 4.8. Increasing 0 also results in a more pronounced coupling between the

bending and torsional behavior of the laminate. This is especially evident in the higher

modes. Beyond 0=30 ° , the bending stiffness continues to decrease while the torsional

stiffness also decreases as indicated by a reduction in the second frequency. Although in

the static case the maximum torsional stiffness occurs at 0=45 ° , this is not exactly true in

the dynamic case since the mode shapes exhibit bending-twist coupling. Although in the

static case the laminate becomes more stiff in torsion, the influence of the softer bending

behavior reduces, rather than increases the natural frequencies for these modes. These

features are even more evident for the case of a/b = 2. Here, the first five frequencies

correspond to the first bending, first torsion, first camber, second bending and second

torsional mode shapes, respectively. Again, the distinction between the bending and

torsional mode shapes becomes blurred for the higher modes as 0 is increased due to the

coupling of these features. In this case, the frequency corresponding to the second bending

mode decreases as 0 is increased as expected while the frequency corresponding to the

second torsional mode increases up to 0=30 °, then decreases. According to the classical

laminate theory (CLT), the normalized natural frequency parameters remain constant for

increasing laminate thickness since transverse shear deformation is neglected. This leads to

serious errors for thicker laminates, especially for highly orthotropic materials, as observed

in Tables 4.7 and 4.8. In the worst case, the CLT over predicts the natural frequency by as

much as a factor of four (Table 4.8) for a/b=2, a/h=5 and 0=45 °. It can thm_efore be



Concluded that the CLT is unacceptable: for-_iedieti:0i=i"_tsf_i_'attii_-gti-fi---eqi_6i_'eiegin i_t_iicker

orthotropic laminates. However, the HOT agrees well with the NASTRAN results and is

considered effective for dynamic analysis of composites, even thick and highly orthotropic

laminates.
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Table 4.5 Normalized frequency parameters (co*) for cantilever orthotropic plates, a/h= t00

a/b 0 Solution mode 1 mode 2 mode 3 mode 4 mode 5

0
HOT 5.580 6.119 t0.300 21.567 34.578

CQUAD4 5.544 5.994 9.758 19.799 33.731
CLT 5.590 6.132 10.318 21.605 34.995

15
HOT 4.725 7.030 12.992 24.528 30.072

CQUAD4 4.660 6.917 12.341 22.388 28.228
CLT 4.734 7.050 13.045 24.631 30.426

3O

45

HOT 3.537 8.214 16.427 22.825 28.327
CQUAD4 3.500 8.041 15.323 21.544 26.118

CLT 3.546 8.254 16.568 23.043 28.612

HOT 2.281 8.296 12.959 20.964 27.222

CQUAD4 2.261 8.061 12.169 20.030 25.718
CLT 2.289 8.346 13.068 21.120 27.495

6O
HOT 1.404 6.763 8.387 19.655 23.176

CQUAD4 1.400 6.501 8.118 18.642 22.098
CLT 1.407 6.796 8.411 19.767 23.299

HOT 5.579 7.492 30.459 34.662 37.047
CQUAD4 5.543 7.324 28.929 33.786 35.575

CLT 5.589 7.514 30.519 35.079 37.494

15
HOT 4.537 10.848 29.256 33.452 41.438

CQUAD4 4.489 10.628 28.033 31.873 39.805
CLT 4.549 10.925 29.612 33.658 41.984

2 3O
HOT 3.201 13.993 19.961 40.237 46.442

CQUAD4 3.148 13.614 18.956 38.408 44.085
CLT 3.221 14.163 20.257 40.746 47.269

45
HOT 1.982 11.585 14.790 34.888 43.521

CQUAD4 1.910 11.173 14.002 33.485 40.696
CLT 2.003 11.715 15.055 35.450 44.341

6O
HOT 1.115 7.845 12.136 23.140 36.887

CQUAD4 1.260 7.657 l 1.383 22.322 34.104
CLT 1.123 7.884 12.299 23.326 37.427
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Table 4.6 Normalized frequency parameters (co*) for cantilever orthotropic plates, a/h=25

a/b 0 Solution mode 1 mode 2 mode 3 mode 4 mode 5

0
HOT 5.437 5.937 10.027 20.899 22.926

CQUAD4 5.391 5.805 9.512 19.295 22.849
CLT 5.590 6.132 10.318 21.605 34.995

15
HOT 4.595 6.755 12.304 23.126 26.003

CQUAD4 4.519 6.630 11.658 21.143 24.188
CLT 4.734 7.050 13.045 24.631 30.426

3O
HOT 3.433 7.751 14.913 20.345 25.236

CQUAD4 3.375 7.551 13.810 19.096 23.363
CLT 3.546 8.254 16.568 23.043 28.612

45
HOT 2.206 7.773 11.862 19.228 24.352

CQUAD4 2.163 7.500 11.099 18.336 22.981
CLT 21289 8.346 13.068 21.120 27.495

6O
HOT 1.380 6.411 8.102 18.345 21.689

CQUAD4 1.360 6.115 7.837 17.360 20.635
CLT 1.407 6.796 8.411 19.767 23.299

0
HOT 5.434 7.170 21.766 29.223 29.884

CQUAD4 5.390 7.010 21.686 28.073 28.790
CLT 5.589 7.514 30.519 35.079 37.494

15
HOT 4.392 10.051 25.348 30.881 35.741

CQUAD4 4.342 9.844 24.068 29.691 34.151
CLT 4.549 10.925 29.612 33.658 41.984

3O
HOT 3.049 12.629 17.577 33.532 35.432

CQUAD4 2.985 12.272 16.651 32.207 34.027
CLT 3.221 14.163 20.257 40.746 47.269

45
HOT 1.861 10.681 13.024 19.827 30.453

CQUAD4 1.772 10.314 12.388 17.344 29.082
CLT 2.003 11.715 15.055 35.450 44.341

6O
HOT 1.159 7.544 10.982 15.378 21.530

CQUAD4 1.211 7.359 10.287 13.337 20.817
CLT 1. 123 7.884 12.299 23.326 37.427
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Table 4.7 Normalized frequency parameters (co*) for can tilever orthotropic plates, a/h= 10

a/b _3 Solution mode t mode 2 mode 3 mode 4 mode 5

0
HOT 4.783 5.148 8.962 9.171 19.567

CQUAD4 4.709 5.010 8.609 9.140 17.326
CLT 5.590 6.132 10.318 21.605 34.995

15
HOT 4.067 5.769 10.279 17.495 18.764

CQUAD4 3.980 5.650 9.829 16.280 17.577
CLT 4.734 7.050 13.045 24.631 30.426

30
HOT 3.069 6.437 11.552 14.830 18.316

CQUAD4 3.014 6.284 10.850 14.129 17.283
CLT 3.546 8.254 16.568 23.043 28.612

45
HOT 1.990 6.445 9.443 13.553 14.939

CQUAD4 1.959 6.243 8.977 12.680 14.418
CLT 2.289 8.346 13.068 21.120 27.495

6O
HOT 1.293 5.506 7.217 10.001 14.791

CQUAD4 1.287 5.304 7.037 9.474 14.266
CLT 1.407 6.796 8.411 19.767 23.299

0
HOT 4.782 5.962 8.706 19.586 21.075

CQUAD4 4.708 5.849 8.674 18.173 19.667
CLT 5.589 7.514 30.519 35.079 37.494

15
HOT 3.889 7.958 16.524 17.223 22.878

CQUAD4 3.824 7.836 16.187 16.408 21.939
CLT 4.549 10.925 29.612 33.658 41.984

30
HOT 2.720 9.644 13.021 13.412 25.144

CQUAD4 2.672 9.480 12.416 12.883 24.347
CLT 3.221 14.163 20.257 40.746 47.269

45
HOT 1.595 7.933 8.804 9.735 21.952

CQUAD4 1.598 6.938 8.568 9.532 21.056
CLT 2.003 11.715 15.055 35.450 44.341

6O
HOT 0.976 6.154 6.736 8.540 17.189

CQUAD4 1.156 5.335 6.665 8.312 16.995
CLT 1. 123 7.884 12.299 23.326 37.427
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Table 4.8 Normalized fiequency parameters (co*) for cantilever orthotropic plates, a/h=5

a/b 0 Solution mode 1 mode 2 mode 3 mode 4 mode 5

0
HOT 3.617 3.818 4.585 7.284 12.393

CQUAD4 3.442 3.637 4.570 7.203 10.893
CLT 5.590 6.132 10.318 21.605 34.995

15
HOT 3.113 4.271 7.863 10.149 11.174

CQUAD4 3.010 4.136 7.722 10.095 10.235
CLT 4.734 7.050 13.045 24.631 30.426

3O

45

HOT 2.484 4.758 8.205 10.008 11.000
CQUAD4 2.423 4.636 7.850 9.579 10.688

CLT 3.546 8.254 16.568 23.043 28.612

HOT 1.704 4.807 6.776 6.777 11.731

CQUAD4 1.685 4.694 6.340 6.536 10.189
CLT 2.289 8.346 13.068 21.120 27.495

6O
HOT 1.210 4.285 5.001 5.742 8.994

CQUAD4 1.190 4.194 4.737 5.640 8.857
CLT 1.407 6.796 8.411 19.767 23.299

0
HOT 3.619 4.195 4.353 12.406 13.355

CQUAD4 3.441 4.186 4.337 10.892 12.432
CLT 5.589 7.514 30.519 35.079 37.494

15
HOT 3.012 5.476 8.262 11.087 14.882

CQUAD4 2.936 5.510 8.204 10.178 14.175
CLT 4.549 10.925 29.612 33.658 41.984

2 3O
HOT 2.246 6.442 6.706 8.887 16.098

CQUAD4 2.239 6.441 6.526 8.41 l 15.451
CLT 3.221 14.163 20.257 40.746 47.269

45
HOT 1.462 3.966 6.373 6.549 10.976

CQUAD4 1.435 3.469 6.390 6.518 10.668
CLT 2.003 11.715 15.055 35.450 44.341.

6O
HOT 1.057 3.075 5.469 5.748 8.594

CQUAD4 1.097 2.667 5.458 5.911 8.497
CLT 1.123 7.884 12.299 23.326 37.427



................ 4.3_C--orrelation of Piezoelectric Actuation of Beams and Plates

" -::861.:i_ " _: -

4.3.1 Correlation with isotropic piezoelectric beam: The higher order theory is applied to

the problem of determining static displacements of a beam constructed entirely of

piezoelectric material. The beam is constructed from two plies of PVDF polymeric

piezoelectric material. Beam dimensions and poling directions of the piezoelectric plies are

shown in Fig 4.7. Note that the top layer is polarized in the direction of the applied voltage

and the bottom layer is polarized in the direction opposite the applied voltage. An electric

field due to the voltage source is applied across the beam such that the top layer expands

while the bottom layer contracts causing bending moment and a transverse deflection. The

material properties for this beam-like piezoelectric structure can be assumed to be isotropic

with values given as follows

E=2.0 GPa, v=0.30, d31=23pm/V

The transverse tip deflection (w) for the piezoelectric cantilever beam is calculated over

a wide range of applied electric fields which corresponds to a range of applied voltage 0 _<

V < 500 Volts. Results using the HOT are compared with experimental results obtained by

Lee and Moon (1989) as shown in Fig 4.8. The tip deflections predicted using the HOT

are in excellent agreement with the experimental results. It must be noted that PVDF has

the advantage over piezoceramic materials, such as PZT, that significantly higher electric

fields can be applied without damage to the piezoelectric properties. The results is that

larger deflections are possible compared to PZT. However, PVDF is much more compliant

than stiff PZTs. Therefore, the force developed using PVDF materials is significantly

lower than that possible using piezoceramics.
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Fig. 4.7 Two layer piezoelectric cantilever beam.
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Fig. 4.8 Tip deflection piezoelectric cantilever beam.

4.3.2 Correlation of piezoelectric actuation of isotropic and orthotropic plates: The higher

order theory (HOT) is now used to predict displacements and rotations of isotropic and

orthotropic laminates which are deformed by energizing surface bonded piezoelectric

actuators. The results using the HOT are compared to experimental results obtained by

Crawley and Lazarus (1991). The test case consists of a cantilever laminate with
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.................................... _l_on-_ledto either an aluminum plate or a graphite/epoxy plate of the same dimensions with

stacking sequences [0°/45°/-45°]s and [30°/30°/0°]s. The thicknesses of the composite

laminate and the surface bonded piezoelectric actuators are 0.83 mm and 0.25 ram,

respectively. The bimorph piezoelectric actuator pairs are energized with opposite electric

fields to produce plate bending. Material properties are presented in Table 4.9 and will be

discussed in further detail in a moment.

The HOT finite element model comprises 77 elements and a total of 616 degrees of

freedom. Overall, good agreement is observed between the HOT and the experimental

results for both the aluminum and Gr/Ep plates as shown in Figs. 4.10 - 4.12. The

nondimensionaI quantities shown include the plate bending (w 1), twist (w2) and camber oi"

transverse bending (w3) which are defined as follows.

w 1 =M 2/W (4.3.1)

w2 =(M3-M1)/W (4.3.2)

M2-(M3 +M1)/2
w3 = (4.3.3)

W

where M1 and M3 are transverse displacements measured at the outer transverse edges, M2

is the transverse displacement measured at the center of the plate and W is the width of the

plate (Fig 4.9).

As indicated previously, the material properties for the composite laminate and the

piezoelectric actuators is presented in Table 4.9. The properties used are identical to those

used by Seeley and Chattopadhyay (1996) indicated as [l] in Table 4.9. It must be noted

that the composite substructure is an orthotropic material (Gr/Ep T300/976) while the

piezoelectric material (PZT G-1195) is considered an isotropic material in the context of

two dimensional laminate theories. The values used in this work are either taken directly

from the original research paper by Crawley and Lazarus (1991), or a reasonable estimate
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coupling can be represented by either a single constant (d31), or two experimentally

determined parameters as described by Crawley and Lazarus (1991). Neither of these

values used in their study are listed in their paper for the cases presented. Therefore, a

reasonable guess must be made. However, other authors have taken unusual liberties with

the values for the material parameters in an effort to obtain experimental verification. The

values used by several different authors for verification studies are presented in Table 4.9

when available. Relevant data which is not given in these references is also indicated. As

an example, both Chandrashekhara and Agarwal (1993) and Ha et al. (1992) use

significantly different values of the shear moduli (G23, G13, and G12) for their research.

Only G12 is given in the original work which is different from both of the values used by

these authors. Detwiler (1995) does not specify the material properties used, but the

applied electric fields (E3) for the two cases indicated as specified in their work are

completely different from the original work of Crawley and Lazarus (1991). All of the

authors indicated in Table 4.9 present results which correlate with the experimental data.

However, deviations are also apparent. From this discussion, it can be concluded that the

HOT agrees with the published experimental data as well as can be expected. Deviations

are the result of imprecise knowledge of the experimental parameters.

actuators

T
W=
15.2 cm

L = 29.2 _...._1cm - I
Fig. 4.9 Cantilever plate with piezoelectric actuators.
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Table 4.9 Material properties for cantilever plate experimental validation.

Material Authors

[1]

E3

E3

T300/976 Gr/Ep

E1 (GPa)

E2 (GPa)

V12

G12=G13 (GPa)

G23 (GPa)

PZT G-1195

E (GPa)

V

d31 (pro/V)

E3 (A1) (V/ram)

([0°/+45°]s) (V/mm)

([0°/30°2]_) (V/ram)

[2] [3] [4] [5] [6]

143 143 144.23 150 * 150

9.7 9.7 9.65 9 * 9

0.3 0.3 0.3 0.3 * 0.3

6.0 6.0 4.14 7.10 * 7.10

2.5 3.45 2.50 * *

63.0 63.0 63.0

0.3 0.3 0.28

253 * 254

630 630

63.0 * 63.0

0.3 * 0.3

254 * 264

394 630 400

- 755 480

394 394 394

472 472

[1] Seeley and Chattopadhyay (1996)
[2] Crawley and Lazarus (1991)

[3] Chandrashekhara and Agarwal (1993)
[4] Ha et al. (1992)
[5] Detwiler et al. (1995)
{6] Koconis et al. (1994)
(-) nonessential parameter absent
(*) essential parameter absent
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4.3.3 Correlation of composite beam natural frequencies: The current higher order theory

(HOT) is now applied to the problem of determining the natural frequencies of beana with

bonded piezoelectric actuators. Two examples are presented to correlate the HOT with both

experimental data and other analytical techniques. The dimensions of the two beams used

in this study which have varying boundary conditions are shown in Figs 13 (a and b) along

with the actuator locations. The material properties for the aluminum beam sub structure

and the PZT piezoelectric actuators used for both examples are assumed to be isotropic and

are given as follows

Al: E=70 GPa v=0.3 p=2700 kg/m3 PZT: E=63 GPa v=0.3 p=7600 kg/m3

d31 =254pm/V

In the first example the first five natural frequencies of a simply supported aluminum

beam with dimensions shown in Fig 4.13 (a) are determined using the HOT and compared

to experimental results obtained by Richard and Cudney (1993). A piezoelectric patch of

dimensions 38x38mm and thickness 0.3 mm is bonded to one surface of the beam at the

location indicated in Fig 4.13 (a). Although the stiffness of the piezoelectric patch is

similar to that of aluminum, it is ahnost three times as dense. Therefore, the natural

frequencies of the beam with the piezoelectric patch are different from those of a similar

beam with no piezoelectric patch. Results obtained using the HOT and from the

experiments are presented in Fig. 4.14 where it is observed that the first five natural

frequencies of the beam agree fairly well with the experimental results. In general, the

frequencies are over predicted by the HOT indicating that the structure is slightly softer than

indicated by the material and geometric properties alone. This is most likely due to

nonideal boundary conditions which allow small displacements that cause the experimental

frequencies to be lower than if perfect boundary conditions were possible. The largest
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the HOT and these experimental results is satisfied.
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Fig. 4.13

D luminum sub structure

I piezoelectric actuator

Beams with piezoelectric actuators (a) simply supported (b) cantilever.
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Fig. 4.14 Correlation of HOT with experimentally determined natural fl'equencies

The next example is studied to determine how well the HOT predicts the natural

frequencies of a cantilever beam with a bonded piezoelectric actuator compared to other

analytical approaches. The test article is again an aluminum beam with a PZT actuator,

only now cantilever boundary conditions are used. Dimensions of this beam are shown in

Fig. 4.13 (b) where it is shown that the PZT actuator covers the entire top surface of the

beam. The first ten natural frequencies are computed using the HOT. These results are

compared to the same frequencies determined using the first order shear deformation theory

(FSDT) and the layerwise theory of Reddy (1991) (LT). It must be noted that

implementation of the layerwise theory requires discretization through the thickness

direction as well as the inplane directions which improves the accuracy of the theory, but

significantly increases the computational effort as well. Results obtained using the FSDT,

HOT and LT approaches are presented in Table 4.10. In general, frequencies predicted

using the HOT lie between the values predicted by the FSDT and the LT. The FSDT is

generally slightly stiffer than either the HOT or the LT due to its crude approximation for
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approaches, but is also the most expensive by a significant margin. The frequency for tile

lowest mode is approximately 2% higher than either the FSDT or the LT. For this study,

both the FSDT and the LT are implemented using 30 lengthwise elements wilile only 15

lengthwise elements are used for the HOT. Further mesh refinement for the HOT would

most likely reduce this effect. Overall, the trends in the frequencies predicted by the HOT

correlate well with the FSDT and the LT.

Table 4.10 Correlation of natural frequencies (Hz) for cantilever beam.

Mode Number FSDT HOT LT

1 537.6 548.4 538.4

2 3193.0 3189.1 3180.7

3 7576.6 7583.7 7565.6

4 8324.0 8331.3 8200.9

5 14970.1 15005.4 14434.2

6 22428.1 21982.5 21371.3

7 22984.4 22480.6 22709.0

8 31056.9 30761.5 28886.5

9 37901.0 36169.6 33985.3

19 39994.7 38001.4 37947.8

4.4 Correlation of Debonded Orthotropic Laminates

In this section, the higher order theory (HOT) is used to predict displacements and

natural frequencies of a debonded composite laminate. The geometry of the test structure is

shown in Fig 4.15. This laminate consists of four plies, each with thickness t=h/4, and the

stacking sequence is [0°/90°]s. Debonding is introduced at the tip of the laminate between

the third and fourth plies shown in the side view of Fig. 4.15. The length of the debonding

(Ld) is described by the nondimensional debonding parameter 13([3=Ld/a). The static
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across the width of the laminate, but is applied directly to the fourth ply which becomes

separated from the rest of the laminate due to debonding. The material properties of the

laminate are as follows

E1 = 60 GPa, E2 = 25 GPa, v¢2 = 0.25, G23 = 4.8 GPa, G13 = 12 GPa, G12 = 12

GPa, p = 1500 kg/m 3.

The static and dynamic results obtained using the HOT are compared with results

acquired using NASTRAN. The HOT analysis, which is two dimensional in nature,

consists of either a 10x 10 or 12x 12 mesh, depending on the length of the debonding. The

nondebonded region requires only one element through the thickness while two elements

through the thickness are used to model the debonded region. Three dimensional CHEXA

elements in NASTRAN are used to correlated the HOT results. These elements contain

eight nodes with three degrees of freedom at each node. A 20x20x4 mesh is used in this

case. This is the smallest practical mesh for the example presented here due to limitations

on the aspect ratios of the CHEXA elements. It must be noted that many more degrees of

freedom are required for the NASTRAN results which results in significantly more

computation time and memory requirements. To obtain correlation for displacements and

natural frequencies, several different laminate thicknesses are studied ranging from thin to

very thick (a/h=100, 25, 10) for different debonding lengths ([3=0, 0.10, 0.25, 0.50).

Both the HOT and NASTRAN results were obtained by the author.
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q,,

a
Fig. 4.15 Debonded cantilever composite laminate with tip load

4.4.1 Static correlation of debonded composite laminate: The static deflections of the

debonded composite laminate due to an applied tip toad are evaluated first to judge the

accuracy of the HOT compared to a three dimensional NASTRAN analysis. The transverse

deflections are normalized as follows

h3E2
w* = w-- (4.4.1)

q0 a4

In Figs 4.16 (a-d), w* is presented for the case of a moderately thick laminate (a/h=25)

for varying debonding lengths (13=0, 0.10, 0.25, 0.50) for both the HOT and NASTRAN

results. Obviously, the case of 13=0 represents the limiting case for a composite laminate

with no debonding. The nondimensionalized deflections are presented along the center of

the laminated from the clamped end to the tip (w*(x,b/2)). Deflections both above and

below the debonding are shown which occurs as the debonded section pulls away fiom the

rest of the laminate. This is because the tip load is applied to debonded ply, which is the

fourth and outermost ply. It can be seen that the deflections in the regions above and below

the debonding become largely independent of one another as the debonding length

increases. Increasing the debonding length also significantly increases the

nondimensionalized deflections since the structure is weakened by the presence of

debonding. It must be noted that the deflections of the debonded composite laminate
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4.16 (a-d) to facilitate determining the accuracy of the HOT. Agreement between the HOT

and NASTRAN is excellent, even for large debonding lengths (13=0.25, 0.50). The HOT

predicts deflections which are very similar to those predicted by NASTRAN for this

moderately thick (a/h=25) laminate.

The HOT is used to predict deflections of debonded composite laminates for several

different thicknesses ranging from thin to very thick (a/h=100,25,10). The tip deflections

for these three cases are presented in Figs 4.17 (a-c) where the deflections are normalized

as before. Both the deflection of the debonded ply above the debonding at the tip of the

laminate and the other region below the debonding are shown for values of 13=0, 0.10,

0.25, 0.50. Results are presented for these deflections using both the HOT and

NASTRAN. As before, agreement between the HOT and NASTRAN is excellent. The tip

deflection of the debonded region increases significantly as the debonding length is

increased. Since this region is the most compliant region of the structure, is deflects the

most. The deflection of the region below the debonded region actually decreases as the

debonding length is increased since it is significantly stiffer than the debonded region and

the force is applied only to the debonded region. The HOT under predicts the deflection of

the debonded region by a small amount for large debonding lengths (13=0.50). This is

possibly due to the following rational. The stress gradients near the interface of the

debonded and nondebonded region are large. The fine mesh used for the three dimensional

NASTRAN analysis, which includes discretization through the thickness direction, more

accurately captures local stress concentrations in this area. The course mesh used by the

two dimensional HOT produces a some what stiffer structure which results in slightly

smaller displacements for this extreme case. The difference between the HOT and the

NASTRAN deflections is about 6% in the worse case, but is generally much less. The

HOT also uses significantly fewer degrees of freedom than the NASTRAN analysis.
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Fig. 4.16 Nondimensional displacements of debonded composite laminated.
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4.4.2 Natural fi-equency determination of debonded composite laminate: The HOT,is.now ..........

used to predict the natural frequencies of the debonded composite laminate being studied

shown in Fig 4.15. To obtain correlation for the natural frequencies, several different

laminate thicknesses are again studied ranging from thin to very thick (a/h=100, 25, 10) for

four different debonding lengths (13=0, 0.10, 0.25, 0.50). The HOT results are compared

to NASTRAN results using three dimensional CHEXA elements as before. Again, all

results were obtained by the author. The natural frequencies for the first ten modes are

presented in Tables 4.11 - 4.13. The natural frequencies are normalized as follows.

a2 _I p i = 1,2 ..... 10
0)i * = C0i h- VE2

(4.4.2)

Correlation between the HOT and the NASTRAN (CQUAD4) results is very good. In

general, the frequencies are reduced for all modes as the debonding length increases. The

only exceptions to this trend occurs for the first mode of each thickness case studied from

13=0 to 13=0.10. This is because a 12x12 mesh is used for 13=0 and a 10xl0 mesh is used

for 13=0.10. The courser mesh has a slight effect on the natural frequency determination,

but is on the order of 1% and does not have a significant effect on any of the other modes.

The lowest natural frequency is not significantly effected by the presence of the debonding

until it becomes very large. This is because the fundamental mode for the nondebonded

laminate is also the first bending mode which is relatively insensitive to localized changes,

such as debonding, until it becomes very large. The second mode, which is a twisting

mode, is also relatively insensitive to the debonding until it becomes very large. It does

appear to be more sensitive than the first mode to changes in the debonding length,

however. The third through sixth modes become increasingly more sensitive to the

debonding length. A significant drop in these frequencies is observed from 13=0.10 to

13=0.25 whereas the first two modes remain mostly unchanged until the debonding length

is increased from 13=0.25 to 13=0.50. This is because these modes, begin to be effected by

localized changes in the stiffness properties of the structure due to debonding. The higher



modes presented, seven through ten, contain many local inflection points and are

significantly altered by the presence of even relatively small debondings. These mode

shapes are altered significantly as [3 is increased and incorporate localized deflections due

the debonding rather than the global deflections contained in the first few modes. Some of

the frequencies for modes with large debonding are very closely spaced. It must be noted

that the debonded structure is not symmetric. Therefore, these frequencies do not

correspond to repeated symmetric modes, but rather distinct mode shapes due the presence

of debonding. The closeness of their values is mere coincidence. The frequencies

corresponding to all modes are also effected by the thickness to length ratio (a/h) of the

laminates. Increasing the thickness of the laminate results in more deformation due to

transverse shear effects. The effect is lower natural frequencies as observed in Tables 4.11

- 4.13. The HOT captures all of the features of the natural frequencies and mode shapes

found in the more expensive three dimensional NASTRAN analysis. The results of these

two approaches correlate very well. Therefore, the HOT can be used as a reliable technique

to predict natural frequencies of debonded composite laminates.



Table 4.11 Natural fiequency parameters for debonded composite laminate (a/h= 100)

mode analysis debonding length

number type [3=0 _3=0.10 [3=0.25 [3=0.50

1 HOT 0.2427 0.2465 0.2449 0.2068

NASTRAN 0.2436 0.2436 0.2424 0.2057

2 HOT 0.4924 0.4897 0.4650 0.3118

NASTRAN 0.4839 0.4771 0.4580 0.2995

3 HOT 1.3908 1.3687 1.0501 0.3120

NASTRAN 1.3733 1.3560 1.0338 0.3100

4 HOT 1.5379 1.5363 1.1460 0.5009

NASTRAN 1.5401 1.5352 1.1128 0.5107

5 HOT 1.9268 1.8736 1.1516 0.5545

NASTRAN 1.9084 1.8665 1.1171 0.5208

6 HOT 3.0349 2.9024 1.5212 0.9745

NASTRAN 2.9840 2.8782 1.4981 0.9285

7 HOT 3.3196 3.1790 1.5965 1.0725

NASTRAN 3.2837 3.1869 1.5720 1.0694

8 HOT 4.2619 4.2021 1.7340 1.2858

NASTRAN 4.2817 4.1994 1.6242 1.2905

9 HOT 4.6268 4.4877 1.8610 1.3950

NASTRAN 4.6091 4.4590 1.8882 1.4244

10 HOT 4.9103 4.6435 2.3755 1.6188

NASTRAN 4.8430 4.6071 2.2228 1.5634



Table4.12Naturalfrequencyparametersfor debondedcompositelaminate(a/h=25)

mode analysis debondinglength

number type [3=0 ]3=0.10 ]3=0.25 ]3=0.50
1 HOT 0.2418 0.2424 0.2409 0.2053

NASTRAN 0.2433 0.2433 0.2421 0.2047

2 HOT 0.4856 0.4770 0.4532 0.3101

NASTRAN 0.4802 0.4739 0.4547 0.2962

3 HOT 1.3693 1.3410 1.0450 0.3102

NASTRAN 1.3599 1.3425 1.0073 0.3058

4 HOT 1.5063 1.4995 1.1360 0.4924
NASTRAN 1.5281 1.5232 1.0851 0.5065

5 HOT 1.8767 1.8214 1.1389 0.5528

NASTRAN 1.8833 1.8443 1.0973 0.5164

6 HOT 2.9297 2.8016 1.4892 0.9712

NASTRAN 2.9239 2.8223 1.4756 0.9232

7 HOT 3.1598 3.1047 1.5704 1.0589
NASTRAN 3.2216 3.1226 1.5501 1.0581

8 HOT 3.2483 3.1379 1.7190 1.2648

NASTRAN 3.4287 3.4284 1.5937 1.2794

9 HOT 4.0596 3.9949 1.8071 1.3733

NASTRAN 4.2060 4.1202 1.8580 1.3990

10 HOT 4.3959 4.2628 2.3523 1.6112

NASTRAN 4.5061 4.3500 2.1889 1.5545
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Table 4.13 Natural frequency parameters for debonded composite laminate (a/h= 10)

mode analysis debonding length

number type 13=0 13=0.10 13=0.25 13=0.50

1 HOT 0.2375 0.2378 0.2365 0.2033

NASTRAN 0.2417 0.2417 0.2405 0.2020

2 HOT 0.4578 0.4516 0.4304 0.3054

NASTRAN 0.4659 0.4608 0.4420 0.2880

3 HOT 1.2640 1.2549 1.0177 0.3056

NASTRAN 1.2992 1.2828 0.9399 0.2956

4 HOT 1.2778 1.2580 1.0896 0.4700

NASTRAN 1.3715 1.3714 1.0151 0.4918

5 HOT 1.3658 1.3544 1.1042 0.5448

NASTRAN 1.4675 1.4629 1.0403 0.5044

6 HOT 1.6681 1.6248 1.2079 0.9541

NASTRAN 1.7779 1.7471 1.3694 0.9055

7 HOT 2.5372 2.4515 1.3471 0.9946

NASTRAN 2.6814 2.5983 1.4012 1.0188

8 HOT 2.9460 2.8346 1.4861 1.0483

NASTRAN 2.9444 2.8533 1.4737 1.2307

9 HOT 3.2713 3.1140 1.6013 1.2013

NASTRAN 3.2741 3.2734 1.5107 1.2985

10 HOT 3.3203 3.2350 1.6485 1.2773

NASTRAN 3.6858 3.6845 1.7465 1.3863
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4.5 Determination of Penalty Factors

The determination of the numerical values of the penalty factors, p_ and P2, which are

used in conjunction with implementation of the continuity conditions, is an important issue

which needs to be addressed (Section 3.7). The augmented equations of motion (Eqn.

3.7.11) are found by minimizing the potential and kinetic energies which include the

penalty terms to satisfy the continuity conditions (Eqns. 3.7.8 and 3.7.9). Minimizing the

augmented potential and kinetic energies represents minimizing the actual potential and

kinetic energy functions while satisfying the constraints introduced by the penalty terms.

To be effective, magnitude of the penalty terms must be comparable to the magnitude of the

potential and kinetic energies. This is achieved by setting the penalty terms, p_ and p.,,- to

the 1-norms of the stiffness and mass matrices, respectively. In practice, the natural

frequencies predicted using this penalty approach are relatively insensitive to the actual

values of p_ and P2 as demonstrated through the example presented next.

Consider the case for the four ply cantilever composite laminate used in the previous

section where b/a=l, a/h=25, 13=0.50. Debonding is introduced at the tip of the laminate

between the third and fourth plies as shown in Fig. 4.15. The 1-norm of the finite element

stiffness and mass matrices for this case, as predicted by the higher order theory, are on the

order of 108 and 10 -1, respectively. Selecting p_=108 and t:)2=10-1 yields very good

correlation with NASTRAN results as indicated in the previous section. The sensitivity of

the natural frequencies to changes in the values of these penalty factors is determined by

varying the values of p_ and P2 over a wide range.

Results for this investigation are presented in Table 4.14. Here, the natural frequency

parameters, which are normalized according to Eqn. 4.4.2, are presented for the first mode

of vibration where the values of p_ and P2 are varied over nine orders of magnitude. In

Table 4.14, values for the first natural frequency for varying p_ are presented by column

while values for varying 102 are presented by row. It is observed that the normalized
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frequency parameter for the first mode changes less than 3.5% over five,:_o1:ders,of.

magnitude for 106 < p_ < 1010. This frequency parameter remains essentially unchanged

over seven orders of magnitude for 10 .5 < p2 < 102 . Similar trends are observed for

frequencies corresponding to the higher modes. Numerical ill-conditioning of the system

matrices is present for values of p_ and P2 larger than those presented in Table 4.14 relative

to the 1-norms of the mass and stiffness matrices. Clearly, this study indicates that the

accuracy of the results is relatively insensitive to a reasonable selection of the penalty terms

p_ and P2.

Table 4.14 First natural frequencies parameters for Gr/Ep [0"/90"]s beam, 13=0.50.

Pl 103 104 105 106 107 108 109 l010 10 II

192

10-5

10-4

10-3

10-2

lO-I

10 o

i0 _

10 2

10 3

0.001 0.040 0.133 0.199 0.205 0.205 0.206 0.204 0.187

0.001 0.040 0.133 0.199 0.205 0.205 0.206 0.204 0.187

0.001 0.040 0.133 0.199 0.205 0.205 0.206 0.204 0.187

0.001 0.040 0.133 0.199 0.205 0.205 0.206 0.204 0.187

0.001 0.040 0.132 0.199 0.205 0.205 0.206 0.204 0.187

0.001 0.037 0.122 0.199 0.205 0.205 0.206 0.204 0.187

0.001 0.024 0.078 0.195 0.205 0.205 0.206 0.204 0.187

0.000 0.009 0.000 0.000 0.204 0.205 0.206 0.204 0.187

0.000 0.003 0.010 0.031 0.000 0.205 0.206 0.204 0.187
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The developed refined higher order theory provides a framework for the analysis of

composite laminates of arbitrary thickness with surface bonded/embedded actuators and is

computationally efficient. Numerical results are presented first to investigate strain and

stress distributions resulting from piezoelectric actuation which are presented for a

cantilever composite plate with varying thicknesses. Differences between the developed

higher order theory and the classical laminate theory are discussed. Static results are

presented for a composite laminate including debonding. The effect of debonding on the

open loop mode shape of the composite beams used in the experimental investigation are

examined. Closed loop mode shapes are also presented.

5.1 Analysis of Stresses and Strains

In this section, a detailed investigation of the stresses and strains throughout a

composite laminate is considered. The test article is a cantilever [0°/0°145°1-45°]s Gr/Ep

laminate with embedded PZT actuators with material properties listed in Table 5.1. The

laminate is 25.0 cm in length and 12.5 cm in width (Fig. 5.1). The outermost plies have

thicknesses 0.050h, the adjacent plies are 0.200h thick, and the remaining plies are 0.125h

thick where h is the total laminate thickness indicated in Fig. 5.1. The piezoelectric

actuators are embedded such that they replace the outermost plies in sections of the laminate

where they are located. Equal but opposite electric fields of magnitude 500 V/mm are

applied through the thicknesses of each actuator pair to produce bending which results in a

tip displacement in the positive z direction (Fig. 5.1). All other loads are assumed to be

zero. The actuators are located centrally on the laminate and the actuator length and width

are 15 cm and 5.25 cm, respectively. The finite element model comprises 80 equal-sized

elements with 630 total degrees of freedom. For comparison, the equivalent model using

the classical laminate theory consists of 450 degrees of freedom.
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Gr/Ep PZT

E1 (GPa) 143 63.0

E2 (GPa) 9.70 63.0

vl2 0.300 0.300

G12, G13 (GPa) 6.00 24.2

G23 (GPa) 2.50 24.2

p (xl03 Kg/m 3) 1.39 7.60

d31 ( xl0 -12 m/V) 253
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0 = -45
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Fig. 5.1 Cantilever Gr/Ep [0°/0°/45°/-45°]s laminate with piezoelectric actuators ; top and
side views.

Strains and stresses are calculated throughout the laminate at the elemental gauss points

used in the stiffness matrix assembly (4x4 integration). In Figs. 5.2 - 5.3, the axial strain

and stress distributions are presented, through the thickness, close to the center of section

P-P as indicated in Fig 5.1. This section is chosen to study the effects of induced strain
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actuationwhere local stressesareexpected•to be.large without the.influenceof global
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boundary conditions such as the fixed end. The transverse shear strain distribution (_13) is

presented in Fig. 5.4 at this same location. Results are presented for laminates of length to

thickness ratio L/h = 10 and 4 which are considered moderately thick and very thick,

respectively, using both the classical laminate theory (CLT) and the higher order theory

(HOT).

Figures 5.2 (a-b) present the strain distribution through the thickness for the moderately

thick and very thick laminates, respectively. Although the strain distribution is slightly

nonlinear for the moderately thick laminate (Fig. 5.2 (a)), the refined theory shows that it is

significantly nonlinear for the very thick laminate (Fig. 5.2 (a)). The CLT does not

accurately capture this complexity. The strain is larger near the free edge of the larninate

due to local deformation from the piezoelectric actuation in the outermost plies, but drops

off more rapidly away from the actuator near the neutral axis as compared to the CLT.

The stresses due to the piezoelectric actuation are presented in Figs. 5.3 (a-b) for four

plies (one half of the laminate thickness). The stresses in the other half of the laminate are

equal, but opposite, due to the symmetry of the laminate and the actuation mode. In these

figures, the stresses are normalized, ply by ply, to the largest value predicted by CLT. The

deviation in the stresses predicted by the HOT and the CLT are small in the outermost ply,

which is the piezoelectric layer. This is because the effect of the additional strain predicted

by the HOT is offset by the induced strain due to piezoelectric actuation. In the adjoining

substrate ply, where the induced strain is zero, the stress is significantly larger than that

predicted by the CLT. However, the stresses in the plies away from the actuator and near

the midplane are less than those predicted by the CLT due to the localized nature of the

stresses resulting from piezoelectric actuation. These results indicate that the contribution

of the higher order terms from the refined displacement field is significant and is important

in the prediction of the strains and stresses through the thickness of composite laminates,

particularly near the source of the induced strain actuation.
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The disttibution--of_'il{e_ti'ansverseShearstiain (c13)thi-ough-tl-iethickness Of the

laminate is presentedin Fig. 5.4 for both L/h values and shows significant variation

through the thickness. The maxilmnn value occursat the midplane of the plate. As

expected,the strain increasesasthethicknessof theplateis increased.It must be noted

that the transverse strains are assumed to be zero in the classical theory.
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Fig. 5.2 Axial strain (a) L/h=10; (b) L/b=4.



112

.... ? .... ., . :.

w

t"-I

¢¢3

0.6

.... L/h= 10 :

UZ/X//////A -1%

/777)Y//////A +4%

///'.////_f/f(/] +t%1 _ CLT

_% ]F_ H°w
' I ' I _ I ' I ' I ' 1

0.7 0.8 0.9 1 1.1 1.2

Normalized axial stress

(a)

. :. : ::i:%7:. "

"-& -2%

///////////////A +12%

cq

¢¢3

0.6

"/////////7_ :6%

==========================

0.7 0.8 0.9 1

CLT

[_ HOT

Normalized axial stress

(b)
Fig. 5.3 Normalized Axial stress (a) L/h=10; (b) L/h=4.

t'q

0.5_

0.4
0.3 _ "- q

0.2 _ _x_x_0.1

-0.1

-0.2-

-0.3.2-

-0.4-

-0.5 ' I ' I ' I ' I' l ' I ' I

0 2 4 6 8 10 12 14

Transverse Shear Strain (_m/m)

Fig. 5.4 Transverse Shear Strain (_13).

5.2 Static displacements including debonding

Numerical results are presented for a cantilever Gr/Ep composite plate with embedded

piezoelectric actuators and a stacking sequence of [0°/90°/0°]6 and dimensions L = 25cm, W

= 10cm, and h = 2.286mm. The ply thickness is 0.127mm. Plies numbered 13-16 are

replaced with a single PZT piezoelectric layer of thickness 0.381mm which represents a

commercially available piezoelectric material thickness. Material properties are those of
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Gr/Ep and PZT show_n:_ in.Table 5,1. A mesh :size of 25x 10 elements,: resulting :i'n 2002 .........

degrees of freedom, is used for tile nondebonded finite element in0dei"._:_Ti_e'_piezoelectric

layer is energized with a constant voltage of 150 volts.

Both longitudinal bending and camber deflections result from the pic'zoelectric actuation

for the case with no debonding shown in Fig. 5.5. This type of deformation is produced

because the piezoelectric layer is offset from the neutral axis of the plate which produces

bending moments about the X and Y axes. Next, a debonding is introduced at the interface

between the composite substructure and the piezoelectric layer (plies 12 and 13), located at

the free end of the plate, through the entire width ( 20 cm < x < 25 cm, 0 cm < y < 10 cm).

The mesh for the composite substructure, located at the midplane of the nondebonded

portion of the plate, comprises 20x 10 elements. Two additional 5x 10 meshes are generated

above and below the debonding at the midplanes of each region. These meshes _re offset

from the midplane of the nondebonded portion of the plate as shown in Fig. 5.6. It is

important to note that Figs. 5.5 and 5.6 are not to scale so that the different meshes may be

easily identified. The piezoelectric layer is again energized with a constant voltage of 150

volts. The static deflection in this case (Fig. 5.6) is significantly different from the first

case (Fig. 5.5) where actuation produces bending which results in negative transverse

displacements. The nondebonded portion of the plate bends downward as before, as does

the region below the debonding. However, the region above the debonding bends in a

positive transverse direction. This is because the offset of the piezoelectric layer from the

local midplane in the debonded region is opposite the offset in the nondebonded region.

This results in a reversal of the bending moment due to piezoelectric actuation and a

positive transverse displacement. Therefore, the presence of debonding causes the actuator

to peel away from the substructure. These results indicate that a thorough understanding of

the effects due to debonding is critical to designing structures with smart composite

materials.
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Fig. 5.5 Static deflection due to piezoelectric actuation.

0.001 27

0.0005

o

-0.0005

-0.001

Fig. 5.6 Static deflection due to piezoelectric actuation including debonding.

5.3 Open loop frequencies and mode shapes including debonding

The effect of debonded piezoelectric transducers on the open loop frequencies and

mode shape of the composite substructure is investigated in this section. The test

specimens are identical to those utilized in the experimental investigation corresponding to

beams 1-4 used in the Chapter 6.. These beams have dimensions 30 x 5.3 x 0.194 cm

with a stacking sequence of [0°/90°]3> Piezoelectric transducers with thickness 0.76 mm

are bonded near the root of the beam for vibration control. Debonding is introduced at the

interface of piezoelectric transducer #2 (top surface) and the Gr/Ep substructure at the edge

of the transducers nearest the root and extends through the width of the beam. As before,

the parameter 13 represents the length of the debonding. Values of 13 = 0.0, 0.06, 0.12,
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0.18 are investigated:roll,several different mode:s. The results obtained: Using the higher :'__:_ :

order theory (HOT) for the nondebonded cases comprise a 17x3 finite element mesh and

additional elements are added as needed to account for varying lengths of debonding.

The open loop mode shapes with and without debonding of piezoelectric transducer #2,

obtained using the present approach, are presented in Figs. 5.7 and 5.8 and the frequencies

are shown in Table 5.2. The first five mode shapes in the absence of debonding are shown

in Fig. 5.7. These mode shapes are typical of the structure being analyzed. The first two

modes represent bending modes, the third and the fourth modes are twist modes and the

fifth mode represents the third bending mode as indicated in the first column. The

frequencies corresponding to these nondebonded ([3=0) modes are presented in Table 2.

The sequential mode number of each of the frequencies is shown in parenthesis. As the

debonding length is increased to [3 = 0.06, the magnitudes of the frequencies decrease

slightly. This is due to a small reduction in the structural stiffness due to debonding.

However, no significant changes are observed in the mode shapes.

Further increase in the debonding length produces significant changes in the mode

shapes. The first several open loop mode shapes for [3 = 0.18 are shown in Fig. 5.8. It

must be noted that in Fig. 5.8, the wire frame elements used to represent the mode shapes

are plotted at the midplane of each element. The midplane corresponding to the debonded

portions of the structure is different from the midplane corresponding to the nondebonded

structure. Therefore, the elements in the debonded regions appear to be disconnected from

the rest of the structure. This presentation of the mode shapes is chosen for clarity. Some

of these modes, such as the first bending mode (Fig. 5.8 (a)) exhibit global deformation of

the substructure. Other modes, such as the second bending mode (Fig. 5.8 (c), clearly

indicates local deformation caused by the debonding of the actuators. Therefore, it is

necessary to study the modes with debonding in greater detail. In Table 2, frequencies

corresponding to modes which exhibit bending or twisting are indicated using B or T,

respectively. The letters G and L are used to indicate global or local behaviors, respectively
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5.8 (a) and (b) show mode shapes which have characteristics of the first bending mode

(B1). In Fig. 5.8 (a), the deformation is primarily global in nature (G). However, Fig 5.8

(b) indicates that the deformation is predominately local (L) due to the debonding of the

actuator. The mode shape presented in Fig. 5.8 (a) shows that both the deformation of the

debonded region and the rest of the substructure are in phase indicating a symmetric (S)

mode. This is in contrast to the mode shape presented in Fig. 5.8 (b) where the local and

global deformation are out of phase indicating an antisymmetric (A) mode. Therefore, the

mode shapes presented in Figs. 5.8 (a) and (b) are denoted GB1S and LB1A, respectively.

The frequencies corresponding to these modes are sequential as indicated in Table 2, but

their values differ significantly (24.208 Hz for LB2A and 55.911 Hz for GB2S for

13=0.18).

The presence of debonding can have a significant and counter intuitive influence on the

values of the frequencies corresponding to the global and local counterparts of modes

displaying similar physical characteristics. It is observed that increase in the debonding

length introduces local modes. For example, LB1S (13=0.12) and LB1A ([3=0.18)

correspond to local bending modes which are absent for smaller values of [3 (Table 2).

Similar _:?servat_ons are made for the higher modes as well. It is also interesting to note

that although there is a general decrease in the values of the natural frequencies as the

debonding length is increased, the value of the frequency corresponding to the second

global bending mode increases (from 114.85 Hz to 118.12 Hz) as [3 is increased. Another

point is that for [3=0.12, although the local twist modes are present (LT1A, LT2S), the

second local bending mode is absent. When the second local bending mode (LB2S) does

appear at [3=0.18, it is at a significantly higher frequency that either of the twist modes as

• indicated by the magnitude of the frequency and the sequential mode number of the

frequency in parenthesis The global and local counterparts of the first twist modes for

[3=0.12 and 13=0.18 display symmetric/antisymmetric behavior while both the global and
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local counterparts of the-second_twistmodes am symmetric. These observationsindicate : : ......

that the dynamic characteristics of the composite laminate can be greatly altered by the

presence of debonding of the piezoelectric transducers. Therefore, careful attention must

be paid to the existence of such imperfections in predicting the dynamic response of such

smart structures.
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Fig. 5.7 (a-e) Mode shapes with no debonding obtained using HOT.
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Fig. 5.8 (a-e) Open loop mode shapes with including debonding obtained using HOT.
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Fig. 5.8 (f-i) Open loop mode shapes with including debonding obtained using HOT.
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type [3 = 0.0 [3 = 0.06 [3 = 0.12 [3 = 0.18

1st 25.749 (1) GBI 24.958 (1) GBI 24.555 (1) GBIS 24.208 (1) GBIS

bending 128.70 (3) LB1S 55.911 (2) LB1A

2nd 118.07 (2) GB2 117.01 (2) GB2 114.85 (2) GB2 118.12 (3) GB2S

bending 382.29 (9) LB2A

1st 153.28 (3) GT1 146.26 (3) GT1 139.42 (4) GTIS 122.55 (4) LTIS

twist 222.56 (5) LT1A 146.66 (5) GT1A

2nd 311.47 (4) GT2 299.02 (4) GT2 266.19 (6) LT2S 275.84 (6) LT2S

twist 302.81 (7) GT2S 297.55 (7) GT2S

3rd 345.54 (5) GB3 341.98 (5) GB3 347.48 (8) GB3 327.82 (8) GB3

bending.

* (G) global, (L) local, (B) bending, (T) twist, (S) symmetric, (A) antisymmetric

5.4 Closed loop mode shapes.

In this section, the effect of the closed loop control due to piezoelectric actuation is

investigated. The test articles are identical to the nondebonded [0°/90°]3s and [45°/-45°]3 s

composite beams with bonded piezoelectric transducers ([3=0). The closed loop control

consists of an accelerometer located at the tip of the cantilever beams and piezoelectric

transducer #2 (top) is again used as an actuator. The first mode shape for the open and

closed loop cases of each beam are presented in Figs 5.9 (a-b). In each case, the modes are

normalized to unity for comparison. The gain for the closed loop case is 8700 which was

the largest gain considered in the experimental investigation. It is observed flom Figs 5.9

(a) and 5.9 (b) that the closed loop mode shapes are nearly the same as the open loop mode
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However, the transducers aheady add stiffness to the beams in the same locations from

their material properties and the additional thickness which they provide. Therefore, the

additional stiffness provided by the closed loop control does not significantly change the

mode shapes. The higher mode shapes exhibit more localized deformation, such as that

caused by the piezoelectric actuation. However, the feedback control is most responsive to

the first mode due to the presence of the low pass filter and less responsive to the higher

modes. Therefore, the higher closed loop mode shapes do not differ by a significant

amount either fi'om their open loop counterparts.

open loop open loop

• closed loop • closed loop

1 1

0.8 0.8

0.4 _ 0.4

0.2 0.2

0 , , , , 0 ' ' I '' I ' ' I ' ' I '' I ' ' I

0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3

X X

(a) (b)
Fig. 5.9 First open and closed loop mode shapes for (a) [0°/90°]s s and (b) [45°#

45°]ssbeams.
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The principal objective of the current research is to develop practical analysis tools fox"

studying composite structures incorporating piezoelectric sensors and actuators. However,

it is necessary to validate these tools through experimental correlations. Furthermore, no

published experimental results have been presented to date which address the issue of

partially debonded piezoelectric actuators. Many practical issues, which are not obvious in

the development of the mathematical model, nmst also be addressed. Therefore, an

experimental investigation was performed as part of the research for this dissertation. The

goals of this investigation are twofold:

1. Assess the accuracy of the higher order theory to model composite structures

incorporating piezoelectric actuators including the effects of partially debonded

actuators

2. Address practical challenges related to the implementation of smart structures.

In the following sections, details are presented to describe the construction and testing of

composite structures incorporating piezoelectric sensors and partially debonded actuators to

reduce vibration.

6.1 Test Specimen Construction

The test specimens were constructed to represent variations in: (a) composite ply

stacking sequence and (b) amount of piezoelectric actuator debonding. Construction

occurred in two phases. The first phase consisted of the layup and curing of the composite

specimens. In the second phase, the piezoelectric transducers and accelerometers were

bonded to the composite substructures. These two phases of construction are described

next.

6.1.1 Composite substructure construction: The material selected for the composite

substructure was HYE-3574 OH Graphite/Epoxy fabric. Two different ply stacking



seque!!ces were.stqdied, [.Q°/90_']3s and [45°/-45°]3s. These ply layups represent commonly

used laminates in the industry. Two large flat plates (122 x 30 cm), one for each stacking

sequence, were constructed from the prepreg fabric. The three stage curing cycle was

standard for this type and geometry of specimen and was specified as follows.

Stage 1" Heat to 126 ° C, pressurize to 690 kPa

Stage 2: Maintain 126 ° C, 690 kPa for 120 rain.

Stage 3: Cool to 60 ° C, 690 kPa for 60 min.

Once the plates were removed from the autoclave, they were cut into strips approximately

56.26 x 5.34 cm. These strips were of the exact width as the final specimens, but were

longer than the test articles to allow fox" clamping at one end. The average thickness of the

specimens was 1.94 mm. Therefore, the ply thickness was approximately 0.161 mm. The

average density was calculated by dividing the average mass of each test specimen by its

volume and was found to be 1507 kg/m 3.

6.1.2 Incorporation of piezoelectric transducers.: The second phase of construction

consisted of attaching the piezoelectric transducers to the composite samples. In this phase,

it was first necessary to locate practical piezoelectric transducers to be used as sensors and

actuators. Lead zirconate titanate (PZT) piezoceramic transducers were found to be the

most useful for the current application of vibration control since they exhibit a relatively

high elastic modulus and piezoelectric coupling coefficients. Although wafers of raw PZT

can be purchased, it was impractical to use these in the current investigation for two

reasons. First, electrodes must be soldered to the material without destroying the

piezoelectric properties. Second, the bare electrodes would be exposed to the conductive

Graphite/Epoxy substructure necessitating an insulating layer and thereby complicating

fabrication. However, PZT transducers were available in a prepackaged format with pre-

attached leads and electrodes encased in an insulating Kapton package. ACX QP40N

piezoceramic transducers were selected with dimensions I0.16 x 2.54 x 0.0762 cm. These
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transducers contained two stacks of two PZT wafers shown in Fig. 6.1 and were used as

both sensors and actuators.

PZT wafers

_Ni 2 3 4

1

Fig. 6.1 ACX QP40N piezoceramic transducer.

Once practical transducers were obtained, it was then necessary to bond them to the

composite specimens. Reliable bonding was essential to ensure the most efficient transfer

of strain from the actuator to the composite substructure and vice versa. Creating a

bonding layer which was stiff, thin, and free of air pockets was critical to maximize the

effectiveness of the actuators. The adhesive material was chosen to be Ecobond 45 clear

epoxy adhesive. It was a stiff, room temperature cure epoxy which had a working life of at

least an hour and was recommended by the manufacturer of the piezoelectric transducers

(ACX).

Several prototypes were constructed to debug the process of bonding the actuators to

the composite substructure. The composite specimens and piezoelectric transducers were

quite expensive. Therefore, the prototypes were constructed from plexiglass, which was

used to represent the composite specimens, and aluminum strips, which represented the

piezoelectric transducers. Since the plexiglass was clear, the additional benefit of visual

inspection of the bonding layer from the bottom was possible. The manufacturer of the

piezoelectric actuators recommended vacuum bagging their products to the host structure

while the adhesive layer cures. After several attempts, this procedure was determined to be

impractical since the epoxy was consistently drawn out from the interface of the transducer

and substructure. A more practical procedure was found to be simply placing weights on

top of the transducers while the epoxy cured. However, this approach lead to the problem



....... .......:-- :' :: ::i:"::r"7!i::::: :":: ......... - 126

of minuscule air pocketscontmninatingthe bonding layer. Placing the epoxy ill a vacuum

chamber for several minutes before applying it to the bonding surfaces, which allowed the

air pockets to expand and burst, produced favorable results. Teflon tape was placed on the

composite substructure around the area to be bonded to prevent excessive flow of epoxy.

Release paper was placed in between the test specimen and the weights to prevent bonding

of the weights to the test specimens. Teflon tape, with thickness 5.08 bun, was placed

underneath portions of the piezoelectric actuators to create pre-existing debonding of the

actuators. The tape was coated with a thin layer of petroleum jelly to ensure that no

adhesion between the actuator and composite substructure occuned. After allowing 24

hours for the epoxy to cure, the specimens were released and the excess epoxy trimmed.

The entire configuration is presented in Fig. 6.2. Additionally, a single Endevco 2250A

Micro miniature accelerometer was bonded to the tip of each of the test specimens using a

cyanoacrylate adhesive.

[ ]'_"----fl at surface

Fig. 6.2 Bonding configuration for the test specimens.

6.1.3 Test specimen configuration: Eight composite test specimens were constructed with

varying stacking sequences and debonding lengths. Piezoelectric transducers were bonded

to the top and bottom surfaces of the composite substructure as indicated in Fig. 6.3 along

with a single accelerometer at the tip. Wooden blocks were clamped at one end to provide
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fixed boundary conditions. The test specimens were clamped sideways in a vise during

testing to further ensure satisfaction of the fixed boundary conditions and minimize

extraneous vibration from corrupting the data. Debonding was introduced between the top

piezoelectric transducer and the composite substructure through the width of the transducer

near the clamped end as shown in Fig. 6.3 (a) The nondimensional debonding length, [3,

is defined as follows.

L (6.1.1)

where LD is the actual debonding length and L is the length of the test specimen. The

physical dimensions of the test specimens are presented in Table 6.1 and the exact

configuration of each beam is presented in Table 6.2. Material properties are presented in

Table 6.3. It must be noted that the d31 value listed for the PZT transducers is that of the

piezoelectric material only. The transducers are really composite structures containing

several different materials, such as the electrodes and the Kapton casing. Therefore, it is

more useful to express the piezoelectric coupling in terms of micro-strain per volt for the

entire composite transducer. This quantity also has a small but noticeable dependency on

the applied electric field. The value for the transducers used for beams 1-4 ([0°/90°]3s) was

0.81 _tm/m while the value for beams 5-8 ([45°/-45°]3s)Was 0.73 _tm/m due to the
V V

lower fields used during testing.
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Fig. 6.3 Test specimen configuration.

Table 6.1 Test specimen dimensions (cm.).

L LI L2 W t h

30 cm 3.4 cm 13.7 cm 5.3 cm 0.76 mm 1.94 mm

Table 6.2 Test specimen configuration.

beam stacking sequence [3

1 [0°/90°]3s 0

2 [0°/90°]3s 0.06

3 [0°/90°]3s 0.12

4 [0°/90°]3s 0.18

5 [45°/-45°]3s 0

6 [45°/-45°]3s 0.06

7 [45°/-45°]3 s 0.12

8 [45°/-45°]3s 0.18
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Table 6.3 Test specimen material properties.

HYE-3574 OH Gr/Ep PZT

El (GPa) 114 6.9

E2 (GPa) 9.5 6.9

G12=G13 (GPa) 4.7 2.6

G23 (GPa) 2.1 2.6

V12 0.30 0.31

p (kg/m 3) 1507 5000

d31 (pro/V) -179

k3 1800

129

Wires had to be attached to the piezoelectric transducers and the accelerometer on each

specimen. This was accomplished via two channels in the clamped wooden blocks (Fig.

6.4). Digi-Key flex cables plug into the piezoelectric transducers and run through the

channels in the wooden blocks. The same was true for the wires which were connected to

the accelerometers. The flex cable was then attached to AWG 22 stranded core wire which

lead to a terminal bus with screw connectors. This intricate wiring scheme was necessary

for two reasons. First, it allowed for the least possible interference with the clamped

boundary conditions. Second, the four pin connectors mounted on the piezoelectric

transducers were extremely fragile. The extension to the terminal bus provided a rugged

and convenient connection for practical test conditions.

_,_...,terminal bus

_.,^ _ _..:a._ _. _. _,. - .............

-- "Q AWG 22 ;i;2 ''_ _ flex cable

Fig. 6.4 Test specimen wire configuration.
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6.2 System Identification

The main goal of the experimental investigation is to correlate the developed

mathematical model with the coinposite beams which were constructed. This requires

experimental determination of the frequencies and damping ratios for each test specimen.

These quantities are extracted from the raw experimental data using a stochastic method

known as the Auto Regressive Moving Average with eXogenious input model (ARMAX)

(Lee and Fassois; 1990: Mignolet et al.; 1993: Mignolet and Red-Horse; 1994). Using this

method, the system is assumed to be linear and represented in the continuous domain by

the following standard set of second order ordinary differential equations.

MR + Cx + Kx = f(t)

where M, C and K are the standard mass, damping and stiffness matrices, respectively, x

is the displacement vector and f(t) is the time varying force vector. This system is

parameterized in the discrete domain as follows

A(z)x(z) = B(z)f(z)+ {_(z)e(z) (6.2.2)

where the term on the left hand side represents the output, the first term on the right hand

side represents the input while the second term represents the noise. The parameters

contained in A, 1_ and C are determined using the ARMAX system identification

technique and z is the unit lag operator. The system poles, zi, are determined flom the

solution of the following characteristic equation.

det(,_(zi)) = 0 (6.2.3)

The natural frequencies and damping ratios of the structure are obtained by mapping the

system poles from the discrete to the continuous domain as follows.

I

(6.2.1)

.... ....... . ..... ", i 7:, i:'-"727 i..' i.: .., .... :.
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where

/ Im(zi)'_

r,= z,, --tan-'t ) (6.2.6)

6.3 Open Loop Structural Response

6.3.1 Open loop transient response: The open loop natural frequencies and damping ratios

of the test specimens are experimentally determined in this section The ARMAX system

identification technique was used on the transient response records of each of the eight test

specimens. The natural frequencies and damping ratios corresponding to first two modes

of vibration, which were the first two bending modes, were then compared with those

predicted by the developed finite element model implementation of the higher order theory.

The next two modes, which were twisting modes, were neither observable or controllable

using the current sensor/actuator configuration. Therefore, they were not considered. The

third bending mode occurred at a frequency nearly three times higher than the second

bending mode and was not considered either.

The test setup consisted of clamping each specimen in a vise which provided fixed

boundary conditions. The tip of each beam was lightly tapped and the charge output of

piezoelectric transducer #1 (bottom) was converted to a voltage and recorded using the data

acquisition system. The entire configuration is shown in Fig. 6.5

data . .

hammer aqulslt_on
beam tap

II

charge 1amplifier

Fig. 6.5 Open loop transient response configuration:
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The response was measured in terms of a voltagewhich4sdirec-tly.proportional to the

charge generated by piezoelectric transducer. This charge is proportional to the strain in tim

piezoelectric transducer and therefore represents the displacement of the beam at a given

time. The voltage history for beams 1 and 5 ([0°/90°]3 s and [45°/-45°]3s, [3=0) is presented

in Figs 6.6 and 6.7.

1

©
>

-1

-2

-3

-4

-5

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (seconds)

Fig. 6.6 Open loop transient response beam 1 ([0°/90°]3s, [3=0).
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Fig. 6.7 Open loop transient response beam 5 ([-45°/45°]3s, [3=0).

A fast Fourier transform on the voltage response records of beams 1 and 5 reveals the

frequency content. These transforms are presented in Figs. 6.8 (a-b)

1- 0.5-
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,--*V,, I -, J , r ;--J'l 0 I ' I , I , I , I

0 25 50 75 100 125 25 50 75 100 125
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(a) (b)

J
!

0

Fig. 6.8 FFT of open loop transient response (a) beam 1 (b) beam 5

The first peak in Figs 6.8 (a-b) represents the frequency of the first mode while tile second

peak represents the second mode. From Fig. 6.8 (a), the frequencies of the first two



modes for beam 1 were approximately 25 Hz and 120 Hz..while the fi1:st_tw.o.fJ:equencies of

beam 5 were approximately 18 and 65 (Fig. 6.8 (b)). The open loop natural frequencies of

beams 1-4 were expected to be similar since all of these beams have the same stacking

sequence. The same was true for beams 5-8. Some small variation was expected due to

the debonding, though. Once the frequencies had been approximately determined,

damping in each of the beams was estimated using the logarithmic decrement approach as

follows.

8=lln(X°/ (6.3.1)
n \Xn/

where 6 is the logarithmic decrement and Xn is the amplitude after n cycles. The damping

ratio, g,, is approximated as follows

6

= (6.3.2)

Using this approach, the damping ratio for the first mode in each beam, which is the

Indominate mode in the transient response, was found to be quite small (L_=0.0025).

general, the decay envelope of the structure is expressed as follows

x(t) = e-C°_t (6.3.3)

Starting from the initial time to, the fraction of amplitude A which remains after some time t

is as follows.

Ae-m¢(to +t)
g - - e -m;ct (6.3.4)

Ae-mgto

In order to accurately measure the damping ratios of the test specimens, a significant decay

in the vibrational amplitude had to be obtained. The amount of time required to allow for

the structure to decay to a certain level was found by rearranging the above equation as

follows.

t= In(A)
(6.3.5)
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than 10% of its original value to allow for accurate determination of the damping ratio.

Using the above equation, along the lowest expect natural frequency (18Hz) and damping

ratio (0.0025), the time required was approximately eight seconds. Therefore, eight

seconds of data were recorded to determine the open loop transient response of each beam.

Once the transient voltage histories of each beam were obtained, the ARMAX technique

was applied to the voltage records to more accurately determine the open loop natural

frequencies and damping ratios for the first two modes of each test specimen. Model

orders ranged from five to twenty five. Lower model orders were consistently inaccurate

while higher model orders resulted in numerical problems due to over determination.

Frequency estimates were consistent over the range of model orders considered. However,

the damping ratio estimates varied somewhat due to the presence of nonlinear damping.

Therefore, several different models, using different model orders, of each voltage history

were generated. Then, the average damping ratios were calculated. The sampling rate used

was 250 Hz. This is more that two times the highest expected frequency to be determined

for accuracy, but is not so high as to degrade the signal to noise ratio of the data.

The experimentally determined frequencies (EXP) for the first two modes are presented

in Table 6.4 and are compared to the same frequencies predicted using the higher order

theory (HOT). In general, the agreement is very good. Although the mass of the

accelerometers is very small (0.4 g), it is included in the mathematical model. The

frequencies were expected to decrease slightly with increasing debonding length which was

observed as a general trend. Since the change is relatively small, it is not clearly observed

in the experimental results of the first mode of the [00/90°]3s beams due to experimental

uncertainty, but it is observed in the [450/-45°]3 s beams. However, this trend is always

observed in the HOT results. An unexpected change occurred in the frequency of the

second mode as the debonding length increases from [3=0.12 to 13=0.18. Although the

structure became less stiff due to the increased debonding length, which would indicate a
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reduction in the fl'equencies, the experimental value of the i_requenw 8r'tt{d"g_c6i_d m0de

actually increased. This increase is also observed in the HOT results for both beams and in

the experimental results for the [0°/90°]3s beams as well. The reason for this anomaly is

that a new localized mode was introduced between the first and second bending modes due

to the flapping motion of the debonded actuator. This new mode alters the dynamic

response of the beam which results in a slightly higher flequency for the second bending

mode.

Table 6.4 Open loop natural fiequency estimates (Hz)

I beam I

1

2

3

4

5

6

7

8

mode 1

EXP HOT % error

25.1 25.4 1.0

24.5 24.6 0.3

24.6 24.2 1.7

24.5 23.8 2.7

17.3 16.4 5.3

16.3 15.6 4.1

15.5 15.2 2.1

15.4 14.8 4.1

EXP

120.6

118.7

119.4

120.3

mode 2

HOT % error

65.5

66.3

66.6

65.9

116.3 3.6

115.3 2.9

113.1 5.3

116.3 3.3

68.0 3.9

67.3 1.5

67.2 0.9

68.4 3.8

The experimentally determined open loop damping ratios are presented in Table 6.5

The damping in all cases was found to be less than 1% which was quite small. The

damping increases from the first to the second mode for beams 1-4 ([0°/90°]3s) while it

decreases for beams 5-8 ([45°145°]3s). The damping was generally higher for the

[45°/45°]3s beams compared to the [0°/90°]3 s beams. This was because the epoxy matrix,

which has inherently higher damping characteristics than the graphite fibers, had a more

significant effect on the structural response of the [45°/45°]3 s beams.
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Table 6.5 Open loop damping ratio estimates

beam EXP- mode 1 EXP - mode 2

1 0.0030 0.0039

2 0.0023 0.0060

3 0.0035 0.0038

4 0.0036 0.0040

5 0.0054 0.0049

6 0.0053 0.0046

7 0.0068 0.0046

8 0.0085 0.0052

6.3.2 Open loop frequency response: The open loop frequency response of the test

specimens is determined next. A sinusoidal voltage with varying frequency is applied to

piezoelectric transducer #1 and the voltage response of piezoelectric transducer #2 was

recorded. The experimental setup is presented in ?_:ig.6.9. A voltage controlled oscillator

circuit, which was designed, tested, and built, was coupled with the data acquisition

system and provided the frequency sweep. Acquiring the frequency response data was

very difficult due to the range of amplitudes at different frequencies. The response of the

specimens near their respective natural frequencies was very large since the structural

damping was very small. Therefore, the input voltage, V, was required to be very small to

keep the structural response within reasonable limits at the resonant frequencies. However,

the response of the structure at other frequencies was extremely small at the same voltage

and often difficult to distinguish from ambient noise in the structure and the charge

amplifier.
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Fig. 6.9 Open loop frequency response experimental setup.
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The frequency response of test specimens 1 ([0°/90°]3s) and beam 5 ([45°/-45°]3s) ,

which have different stacking sequevces but no debonding, are presented in Figs 6.10 (a-

b). The magnitudes in these plots are relative and are only relevant for comparing the

higher order theory (HOT) to the experimental data (EXP). The frequency response of test

specimens 2-4 and 6-8 were similar to test specimens 1 and 5, respectively and were

largely unaffected by the presence of debonded transducers, except for a smart shift in the

resonant frequencies. Therefore, only the response of test specimens 1 and 5 are

presented.

The location of the peaks in the structural response observed by piezoelectric transducer

#2 correlated very well with the peaks which were observed experimentally for all of the

test specimens. This was expected since the natural frequencies predicted by the higher

order theory correlated well with the experimental results as indicated in the previous

section. The first two modes were bending modes and were observable by the sensor.

The next two modes were twist modes and were not observable or controllable using the

current sensor and actuator configuration. The next observable mode, which was the third

bending mode, has a flequency much higher than the first two modes and was not present

in the frequency range of interest. Due to the close proximity of transducers #1 (actuator)

and #2 (sensor), tile deformation seen by transducer #2 included both the global response

of the structure as well as the local deformation produced by transducer #1. The phase of

each these components below resonance was 0 ° and they became additive. However, each

these components above resonance was 180 ° out of phase and they had a canceling effect
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-on each other. This expiains {_e n0iisymmetricshape of-the-:peaks--at'eaoh-ofthe_reg0nant

frequencies which was predicted by the higher order theory and verified experimentally.

(Figs. 6.10 (a-b)). Since a significant portion of the deformation observed by piezoelectric

transducer #2 was local deformation caused by the actuation of transducer #1, stability

problems were encountered for the closed loop control which required information about

the global response of the structure. Therefore, the accelerometer at the tip was used as a

sensor instead for the closed loop feedback control presented next.
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Fig. 6.10 Open loop frequency response (a) beam 1 ([0°/90°]3s) (b) beam 5 ([45°/-45°]3s).

6.4 Control Design

In this section, topics relating to design and implementation of the feedback control

system are discussed. A simple analysis based on classical control theory is developed to

understand basic concepts relating to the control system. The full state space equations are



thenintroducedandthecorrespondingcircuit designfor implementationof thecontrolsis

presented.

6.4.1 Classical approach to control design: Consider a cantilever beam with a piezoelectric

transducer used as an actuator and an accelerometer used as a sensor. The equation of

motion for the first bending mode of the beam, which is assumed to be the most important

mode, is given as follows.

+ 2_bcob#] +CO2q = qbT(F + Fp) (6.4.1)

where q, _, _b and CObare the modal participation facto), mode shape, dan,f, ing ratio and

frequency of the first mode of vibration, respectively, and F and Fp are the external and

piezoelectric fQrces, respectively. The signal

proportional to the acceleration of the beam.

v i = a6_

where a is the proportionality constant.

obtained from the accelerometer Vi, is

(6.4.2)

A second order low pass filter is employed in the

dampers to reduce vibrational amplitudes in the beam.

second order low pass filter is as follows (Stout; 1976).

feedback loop which serves two purposes. First, high frequency noise, which could lead

to unexpected results, is filtered out. Second, the low pass filter provides a 90 ° phase shift

at its resonance, or cutoff frequency, so that the piezoelectric actuation forces are 180 ° out

of phase with the displacement of the beam. Therefore, the control forces act as viscous

The governing equation for the

9 o + 2_fCOf9 o + CO2v o = bv i (6.4.3)

where v0, Y-,fand (of are output voltage, damping ratio, and cutoff frequency of the filter and

b is a constant of proportionality. The piezoelectric control forces are set to be proportional

to the filter output voltage which is fed back into the control loop.

Fp = cv o (6.4.4)
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The block diagram for this system using the Laplace-transformed transfer functions for the

above governing equations, assurning a=b=c= l, is presented in Fig. 6.11 The closed loop

transfer function for this system is as follows.

C(s) s 2 + 2_f0)fs + o)1,2

R(s) = (s2 + 2_f0)fs + 0)f2)(s2 + 2_b0)bS + 0)_) + s2 (6.4.5)

beam

R(s) ,<---.>, E(s) [ t

_ s 2 + 2_bO) bS + fOb2

low pass filter

1 1s 2 + 2_f0)fs + 0)f2 "ql-_

Fig. 6.11 Feedback control loop

C(s)

2-] accelerometer

The control system is most effective when the cutoff frequency of the low pass filter is

tuned to the natural frequency of the beam.

0)f = 0)b (6.4.5)

A high filter damping ratio is also desirable to minimize the phase shift near the cutoff

frequency. The damping ratio of the filter is selected to be that of a Butterworth second

order low pass filter (_1=0.7072) (Stout; 1976). The frequency response of the filter is

presented in Fig 6.12 where the amplitude predicted by the transfer function is compared to

experimental results with 0)f = (25 Hz). The correlation of the filter response is excellent.

The phase is also verified to be -90 ° at 0)f.
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Stability of the control system needs to be studied. This is especially true since the

damping ratio corresponding to the structural damping in the beam for the first mode was

found to be quite small (_f=0.003). A root locus of the control system is constructed to

examine its stability characteristics with mf = COb= 157 rad/sec (25 Hz) (Fig. 6.13). This

corresponds to parameters similar to beams 1-4. A similar analysis was also performed for

beams 5-8. The two poles nearest the vertical axis correspond to the beam. They are very

close the real axis due to the low damping in the beam. The other two poles correspond to

the low pass filter. All values remain on the left hand side of the root locus plot indicating

stability at any gain. This is a desirable feature of the control system selected to provide for

increased damping. However, it is important to keep in mind that only a single bending

mode has been used for the control design. It is possible that under certain circumstances,

higher modes become excited at large gains which may threaten the stability of the control

system. It is assumed for the cunent investigation that the influence of the higher modes is

reduced by the low pass filter and do not present any stability problems.



In practice, the natural frequency of the beam may not correspond exactly to the cutoff

frequency of the filter. It is important to determine the effect of imprecise parameters on the

control system. The root locus is presented in Figs 6.14 and 6.15 for beams frequencies

which are 5% higher and 5% lower than the low pass filter cutoff frequency, respectively.

If the open loop beam frequency is reduced by a small amount (Fig. 6.14), the poles
/

corresponding to the beam are more strongly attracted to the single zero. The closed loop

frequencies are calculated by finding the square root of the sum of the squares of the real

and imaginary parts of the roots which are shown on the root locus. In this case, the root

locus indicates that the closed loop frequency of the beam decreases as the gain is

increased. Further analysis reveals that the closed loop damping increases to a value of

approximately 0.3 until it starts to decrease at very high gains. When the beam natural

frequency is slightly higher than that of the filter (Fig. 6.15), the root locus changes

significantly. As before, the poles corresponding to the beam are nearest the vertical axis

since the damping in the beam is small compared to the filter. However, these poles are no

longer attracted to the single zero. Instead, they increase in magnitude until out of range of

the figure. This indicates that the closed loop frequency of the beam increases, rather than

decreases, as the gain is increased. As before, further analysis indicates that the closed

loop damping increases to a value of approximately 0.3 until it starts to decrease at very

high gains.

Next, the frequency response of the control system is analyzed by constructing Bode

plots of both the open and closed loop systems for the parameters considered above. (Figs.

6.16 and 6.17). The open loop frequency response is presented in Fig. 6.16. A sharp

peak exists in the amplitude response near the frequency of the beam. This is due to the

low structural damping in the beam and was observed in the experimental open loop

frequency response in the previous section. Only a single peak is observed here since only

one mode is used in the control design. The phase shift near the natural frequency is very

abrupt, again due to the low clamping. The closed loop frequency response is presented in
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in tile open loop Bode plot indicating increased damping. The magnitude of this peak is

also reduced substantially. The phase shift near the natural frequency is much more

gradual compared to the open loop response which also indicates increased damping due to

the feedback control.
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Fig. 6.13 Feedback control loop root locus
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6.4.2 State space approach: Several modes must be included in the control analysis used

for the experimental tests to more accurately determine the response of the coupled

controls/structures system. A state space representation of the system is more convenient

to work with than the classical approach and is developed in this section. However, the

conventional notation of state space controls analysis used in Section 3.8 is not practical

due to the presence of second derivative terms from the accelerometer output. Therefore,

an alternative approach is used. The equations of motion of the structure are now given as

follows.

I_ + ZbC 1 + Abq = (I_T(F + Fp) (6.4.6)

where

AbI0bi . (6.4.7)
"

2_biCObi .0. ] (6.4.8)

(6.4.9)

The matrix Ab contains the square of the natural frequencies, Zb contains the structural

damping terms, qb is the modal matrix containing the normalized eigenvectors and q is a

vector of the modal participation factors. The quantity F contains the applied forces and Fp

are the piezoelectric forces determined as follows.

Fp = GF'pv 0 (6.4.10)
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the piezoelectric forees per volt for one oi: more actuators With i'(i_is the

vector containing the applied voltages to the piezoelectric actuators and G contains the gains

of each actuator. Tile signal obtained from the accelerometer vi, is proportional to the

acceleration of the beam as before. The signals from several accelerometers are related to

the accelerations at different points as follows.

v i = S(b_j (6.4.11 )

where S contains the sensitivities of the accelerometers. The Endevco 2250A Micro

miniature accelerometers used in this study have a sensitivity of 0.012 V/(m/s2). The

governing equation for a single second order low pass filter is also the same as before

(Eqn. 6.4.3). Although only one filter is used in the current study, several filters can be

used in a MIMO type control system with governing equations as follows.

Vo + Zfi¢o + Afro = bvi (6.4.12)

where the matrices Zf and Af are analogous to the matrices Z b and Ab, respectively. The

coupled controls/structures equations of motion are represented in state space as follows.

[i000 iqllii 00jlI 0 0__d__d q = - b -Z b 0

o I O/dtlVo/ o o I _o
-s. 0 Ij [*oj 0 -Af -z_ *o

_TF'pG
(6.4.13)

The complex eigenvalues and eigenvectors of the above state space representation of the

control system are determined from the following equation.

(A - _.B)x = 0 (6.4.14)

where

A

i I 0 0

- b -Zb _TF'p G 0

0 0 I

0 -Af -Zf

(6.4.15)
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(6.4.16)

Thus the state space representation used here reduces to an eigenvalue problem which is

solved using standard techniques in a computationally efficient manner since no matrix

inversions are necessary (Mignolet; 1995). Frequencies and damping ratios for the closed

loop system are determined from the complex conjugate eigenvalue pairs as follows.

+ 4

It is important to note that the above matrices, A and B, do not correspond to the A and B

matrices often used in the state space approach for MIMO control systems.

6.8 Closed Loop Structural Response

In this section, the closed loop structural response is investigated. First, the

experimental procedure is described and the design of the analog circuit to implement the

control law are discussed. Results are then presented to correlate the predicted closed loop

response using the higher order theory with experimental data.

6.5.1 Experimental procedure: The goal of the closed loop structural response investigation

is to correlate the closed loop frequencies and damping ratios predicted by the HOT with

experimental results. This was accomplished by recording the transient response of the

beam due to an initial excitation. The hammer hit used in the open loop response to provide

the initial excitation was not appropriate in the closed loop tests because this resulted in a

large voltage spike at t = 0 which could have damaged the feedback control electronics and

the data acquisition system. Instead, a random noise was used to excite the structure which
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was produced by applying a random voltage signal to piezoelectric transducer # 2 fo r

several seconds before the control loop was turned on (t < 0). At t = 0, the random noise

was turned off and the feedback control loop was turned on. For t > 0, the output of the

accelerometer was recorded for an appropriate length of time ( two seconds ) while the

response of the system decayed. This procedure is illustrated in Fig. 6.18. The operation

was repeated for all the test specimens for two different stacking sequences, four

debonding lengths and seven different gains. Several tests were performed at different

times to ensure consistency of the data. Several ARMAX models were generated for each

test record to determine the frequencies and damping ratios. Engineering judgment was

used to discard defective data. The remaining results for each test were then averaged.

t<O t>O

randomnoise

#2 #3
beam [ !

'_'_" ..... [ power

#2_ feedback

control

#3

_ beam i

#1

Fig. 6.18 Test procedure.

6.5.2 Analog circuit design: Implementation of the control law was a non-trivial procedure.

The control loop needed to respond in real time to the motion of the structure while data

was being taken at the same time Ambient noise was a factor and voltage and current limits

of the actuators, data acquisition and control loop had to be considered. This lead to the

implementation of the feedback control loop and test procedure via a nonlinear analog

circuit which is shown in Fig. 6.19 (Durney et al; 1982). Not shown are the power

supplies for the operational amplifiers and ground connections. Only the connections to the

data acquisition system are shown for simplicity although the data acquisition software

(Labview 3.0), hardware (Macintosh 7200/90) and I/O card (Labview PCI 1200) played an
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integral role to the test procedure. The accelerometer also required a signal conditioner

which is not shown. The entire circuit was designed, tested, and implemented in-house

using commercially available electronic parts. The operation of the circuit is described

next.

O
DALOOUT

0
R andoln Nuise

Buffer

Powei-Amp }
Gain = 20

VI*I= 12V

Relay

.....o
o.

O
DALIOUT

O
Accclerometer

lipper -

Power Amp
Gain = 2(I

Fig. 6.19 Closed loop feedback circuit.

O
PiCZO Tlallsducer # [

O

ACH_

V_*}= 12V

[ _ Piczo Transdtlcer #2

At time t < 0, the data acquisition system outputs were as follows.

DACOOUT = 1 volt, DAC1OUT = 0 volt, (t < 0)

These values positioned the relays in the circuit such that the random signal was connected

to piezoelectric transducer #1 while the control loop remained disconnected. This provided

the initial excitation to the structure and avoided a potentially dangerous voltage spike from

the accelerometer. At time t = 0, these values swapped as follows.

DACOOUT = 0 volt, DAC1OUT = 1 volt ( 0 < t _ tl )

This disconnected the random excitation and connected the feedback control loop. Data

acquisition from the accelerometer output began immediately through ACH0 and transpired

for the required length of time (tl) to observe sufficient decay in the response of the
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structure due to the feedback control. Once dat_! acq_.!.sition.wa s con_pJe!e, ?_t.hese values

returned to their original values, thus disconnecting the closed loop control, for safety.

DACOOUT = 1 volt, DACIOUT = 0 volt (0 < t < tl )

The relays required 12 volts @ 11 ma to be triggered. However, the data acquisition

outputs could only supply +_5 volts @ 2 ma. Therefore, a separate power supply was used

for the relay coils which are switched on and off using 2N2222A transistors The transistor

bases were connected to both DACOOUT or DAC1OUT through buffers to retain high

impedance for protection. The relays were placed after the power amplifiers rather than

before since the power amplifiers could potentially saturate flom a floating input.

The feedback control loop consisted of the accelerometer input, preamp, lowpass filter

and power amplifier. The cutoff frequency of the low pass filter was adjusted for different

test specimens by selecting appropriate values for the resistors and capacitors. It also

provided the required phase shift at the resonant frequency of the beam. The gain of the

preamp was selected by changing values of its feedback resistor. It provided a relatively

high gain since the accelerometer signal level is so low (-10 ma). This high gain resulted

in an annoying DC offset drift which was compensated for somewhat using another unity

gain amplifier with an offset adjustment.

The accelerometer output was also sent to the A/D converter in the data acquisition

system (ACH0). It was amplified using a separate preamp flom the feedback control loop.

It was taken before the low pass filter since filtered data may have corrupt the system

identification technique in post computation (Lyon; 1996). It was passed through a voltage

clipper (_+5 volts) which utilized zener diodes to protect the data acquisition system.

6.5.3 Transient response: Representative transient responses of beam 1 ( [0°/90°]3s,f3 = 0)

are presented in Figs 6.20 (a-g) for increasing gains obtained from the experimental data.

The quantity shown is the unfiltered output of the accelerometer which is in the millivolt

range. Clearly, as-the gai_: increases, the decay of the structure also increases. A smooth
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exponential decay is observed for gains 02)2000 and the corresponding frequencies and

damping ratios calculated by the ARMAX procedure were very consistent. At higher

gains, the decay is not quite as smooth. Although the ARMAX frequencies were

consistent, there was some variation in the damping ratios. This is due to the presence of

nonlinear damping. The response of the analog circuit feedback control at higher gains

may be partially responsible. The effect of higher modes may be enhanced at higher gains

and also contribute to the appearance of the transient response at higher gains. It must be

noted that the twist modes are neither controllable or observable in the current configuration

and are assumed to have little effect on the transient response tests.

The transient response decay envelopes for the first mode of vibration are presented in

Figs. 6.21 (a-d) and 6.22 (a-d) for both [0°/90°]3 s and [45°/-45°]3 s beams. Debonding

lengths of [3 = 0.0, 0.06, 0.12 and 0.18 for gains of 0, 200, 400, 1000, 2000, 4000 and

8700 are shown. The response of each case is normalized to unity at t = 0 for comparison

of the experimentally determined values using ARMAX (EXP) and the higher order theory

(HOT). In general, agreement is very good. Increasing the gain significantly reduces the

settling time for all cases. However, the presence of debonding tends to reduce the

authority of the actuators and increases the settling time.
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6.5.4 Correlation of fre@ei_ci6S and d_iN'p'i_iig-/-ati0s: In this section, the experimentally

determined closed loop frequencies and damping ratios (EXP) are compared to the values

of these quantities predicted by the higher order theory (HOT). Correlation is presented for

both [0°/90°]3s and [45°/-45°]3 s beams with debonding lengths of 13= 0.0, 0.06, 0.12 and

0.18 for gains of 0, 200, 400, 1000, 2000, 4000 and 8700. The results are shown in

Tables 6.6 and 6.7 and Figs 6.23 - 6.28. It must be noted that the mass of the

accelerorneter is included in the analysis using the HOT each case.

Correlation between the closed loop frequencies for the EXP and HOT determined

cases is very good in general as shown in Tables 6.6 and 6.7. Overall, increasing

debonding length decreases the frequencies for both [0°/90°]3 s and [45°/-45°]3 s beams.

This is because the debonded portion of the actuators does not contribute any stiffness to

the overall structure while the mass is still present. Decreasing stiffness with constant mass

results in reduced frequencies. This is also true since the debonded actuators have less

control authority over the structure resulting in less influence of the control system on the

structural response. The effects of increasing gain are observed most predominately in the

nondebonded beams. The natural frequency of the [0°/90°]3 s beam ([3 = 0.0) increases

11.1% from 25.2 to 28.0 Hz while the [45°/-45°]3 s ([3 = 0.0) beam increases 2.3% from

17.3 to 17.7 Hz for the EXP case as the gains are increased from 0 to 8700. The HOT

predicts similar increases in the natural frequency of 13.6% and 1.9%, respectively. The

open loop frequencies of all of the [0°/90°]3 s test specimens are larger than the cutoff

frequency of the low pass filter. Therefore, the closed loop frequencies of these beams are

expected to increase with increasing gain as indicated by the root loci for the closed loop

system presented earlier (Fig. 6.15). This trend is observed in both the EXP and HOT

results. Although the open loop frequency of the nondebonded [45°/-45°]3 s beam is larger

than the cutoff frequency of the low pass filter, the open loop beam frequency decreases

significantly (- 10%) for increasing debonding length. In fact, the open loop frequencies

..... :.: .2 i.Z . :..... ' :. _ Z...... : ..... -.... .... :
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of the debonded [45°/-45°]3 s beams ([3>0) are less than the cutoff frequency of the filter.

Therefore, the closed loop frequencies are expected to decrease, rather than increase,

according to the root loci presented earlier (Fig. 6.14). Although this effect is less

noticeable for these beams since it is within the range of experirnental accuracy, it is

observed in the HOT results.

The results for the closed loop damping ratios are presented in Figs. 6.23 and 6.24 for

the [0°/90°]3 s beams and Figs. 6.25 and 6.26 for the [45°/-45°]3 s beams with debonding

lengths ranging from [3 = 0.0, 0.06, 0.12 and 0.18 and gains of 0, 200, 400, 1000, 2000,

4000 and 8700 as before. Increases in closed loop damping ratios up to _ = 0.25 due to

piezoelectric actuation are obtained. Agreement between the EXP and HOT results is

excellent. The closed loop damping ratios include contributions from both the passive

structural Clamping and the active control. The damping ratios corresponding to the passive

structural damping using the HOT are set equal to the experimentally determined damping

ratios at zero gain in each case These structural damping ratios are included in the

calculation of the closed loop damping ratios. In general, debonding decreases the closed

loop damping ratios, especially at high gain (Figs. 6.24 and 6.26). The presence of

debonded actuators has the effect of increasing the open loop damping ratios (gain = 0) and

low gain (gain = 200, 400) in some cases. This is due to friction between the interfaces of

the debonded actuator and the substructure. The open loop damping ratios represent the

passive structural damping present in the system. The structural damping dominates the

closed loop response at low gain and explains why the damping may actually increase as

the debonding length increases (Figs. 6.23 and 6.25). However, once the closed loop

damping is above 0.01, the effect of the control system dominates the response and

debonding consistently reduces the actuator authority in all cases. In the worst case,

debonding reduces the closed loop damping ratio of the [0°/90°]3s beam 68% from 0.023 to

0.073 at a gain of 8700 as the debonding length is increased from [3 = 0.0 to [3 = 0.18.

Debonding clearly has a detrimental effect on the closed loop damping ratios. This



:..... "......::_:_:............ deti:ilnental dffeCt on the contr01"auth0i'ity is especially clear on the settling time of the

coupled controls/structures system as shown in Figs 6.27 and 6.28. The 2% settling time

for the first mode is calculated as the time it takes for the control system to reduce the

vibrational amplitude of the first mode to 2% of its initial value as follows.

t= ln(0.02)
_bcob (6.5.1)

where g,b and CObare the closed loop frequencies corresponding to the first mode of the

beam. It is presented in Figs. 6.27 and 6.28 for values of high gain at various debonding

lengths for the [0°/90°]3 s and the [45°/-45°]3 s beams, respectively. Clearly, increasing

debonding significantly increases the settling time for both beams at relatively high gains.

The settling time increases approximately 230% in the worse case for the [0°/90°]3 s beam

as the debonding length increases from 13= 0.0 to 13.= 0.18 at a gain of 8700.

It must be noted that, in general, the piezoelectric actuators have more control over a

relatively soft structure compared to a relatively stiff one. The [45°/-45°]3 s beams are

relatively softer than the [0°/90°]3 s beams in bending types of deformation. Therefore, the

piezoelectric actuators should demonstrate greater control authority. However, the closed

frequency is significantly less which reduces the output of the accelerometer. Therefore, in

the current study, the feedback control demonstrates relatively less authority over the [45°#

45°]3s beams.
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Fig. 6.23 Closed loop damping ratios for Mode 1 of [0°/90°]3s beams with debonding - low
gain.
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Fig. 6.24 Closed loop damping ratios for Mode 1 of [0°/90°]3s beams with debonding -
high gain.
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Fig. 6.25 Closed loop damping ratios for Mode 1 of [45°/-45°]3 s beams with debonding -
low gain.
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Fig. 6.26 Closed loop damping ratios for Mode 1 of [45°/-45°]3s beams with debonding -
high gain.
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setup: A Visuaii'ec0rd of the laboratory setup was obtained and is

presented in this section. A test specimen is shown clamped in the vise ready to be tested

in Fig. 6.29. Steel weights held the vise to a large concrete mass to minimize mechanical

noise. The test specimen was mounted sideways to fu,ther reduce unwanted noise. The

piezoelectric transducers are visible near the clamped end and the accelerometer can be seen

near the tip of the beam. Some of the electronic devices used in the experiments are shown

in Fig. 6.30. The two power amplifiers for the piezoelectric transducers are seen in the

middle of the figure. On top of the power amplifiers are located the power supplies for the

feedback control circuit. The feedback control circuit was constructed on two breadboards

which are shown lying on the table. Connections between the power amplifiers, circuits,

data acquisition-system and test specimens were made via RG-58 cable with BNC

connectors which comprise the "nest" of wires near the breadboards.

. • . .

Fig.6.29 Test specimen clamped in vice
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Fig.6.30 Feedback control electronic components



7. Concluding Remarks ::":::: : : :. :.-:-•....

A new theory has been developed to model composite laminates with surface bonded or

embedded piezoelectric sensors and actuators. The theory is extended to incorporate the

presence of pre-existing debonding in the composite laminate at the interface between the

piezoelectric actuators and the underlying substructure. A refined higher order

displacement field accurately captures the transverse shear deformation through the

thickness of the smart composite laminate while satisfying the stress free boundary

conditions on the free surfaces, including the debonded region. The higher order theory is

implemented using the finite element method. The state space equations of motion utilizes

the developed theory to account for piezoelectric sensing and actuation for closed loop

control. Correlation of the higher order theory with analytical, numerical and experimental

data is performed. Comparisons are also made with a commercial finite element code. An

experimental investigation is conducted to further understand issues related to control of

structures using piezoelectric actuation. Results are presented to demonstrate the analysis

capability of the new theory. Additional studies are presented on the development of the

constitutive equations for piezoelectric materials, justification of the higher order

displacement field, and mesh generation which accounts for discrete piezoelectric layers.

The following important observations are made.

1) The developed higher order theory provides an accurate, computationally efficient

analysis tool for the study of composite laminates with piezoelectric sensing and

actuation.

2) The theory is extended to incorporate debonded actuators.
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The theory is implemenied:usingllttie finite element"metl_od.=to-a:llowincorporati0n of

practical geometries, boundary conditions and discrete piezoelectric transducer

locations.

4) Correlation with analytical, numerical and experimental data is established for isotropic

and orthotropic plates, piezoelectric actuation and debonding. Both static and dynamic

results agree very well.

5) The experimental investigation addressed practical issues, such as the design,

construction, and testing of composite laminates and feedback control circuits.

Consideration of these practical issues, coupled with the developed mathematical

theory, provide an understanding and appreciation of the difficulty involved in

implementation of smart structures as well as the potential benefit.

6) The agreement between the higher order theory and the experiments is very good.

Subtle trends in the natural frequencies with increasing gain and debonding length are

experimentally correlated with the higher order theory. Closed loop damping ratios on

the order of more than 20% of critical are obtained and agree with the developed theory.

Debonding of the piezoelectric actuators results in a reduction of the control authority

which is also correlated with the higher order theory.

7) Significant deviations are observed between the higher order theory and the classical

laminate theory in the strain and stress distributions through the thickness which

indicates the importance of the higher order terms in the refined displacement field.
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-_:8)' :Deb-onding of the piezOel:eCtfic layer, Which is iriisdeled using thehigher order theory, is

shown to cause peeling of the actuator away from the substructure. This has important

implications for failure analysis.

9) Local and global changes in the mode shapes also result due to debonding.



" ............ " : :.: ": ".8:i:References ........................:........:..................i........:...............::......7.

Aarts, Emile and Korst, Jan (1989) Simulated Annealing and Boltzmann Machines John
Wiley and Sons, N.Y..

Abbott, I. H and Von Doenhoff, A. E. (1959) Theory of Wing Sections Dover
Publications, Inc., N.Y..

Agarwal, B. D. and Broutman, L.J. (1990) Analysis and Performance of Fiber
Composites John Wiley and Sons Inc., N.Y..

Andre, B., Clot, J. Partouche, E. and Simonne, J. J. (1992) "Thin Film PVDF Sensors

Applied to High Acceleration Measurements" Sensors and Actuators pt. A, Vol. 33, pp.
111-114.

Anonymous (1994) "Smart Hush Helicopters" Machine Design, Aug., pp. 36-38.

Bailey, Thomas and Hubbard, James E. Jr. (1985) "Distributed Piezo-Polymer Active
Vibration Control of a Cantilever Beam" Journal of Guidance and Control, Vol. 8, No. 5,
Sep.-Oct., pp. 605-611.

Barbero, E..J. and Reddy, J. N. (1991) "Modeling of Delamination in Composite
Laminates Using a Layer-wise Plate Theory" International Journal of Solids and
Structures, Vol. 28, No. 3, pp. 373-388.

Ben-Zeev, O. and Chopra, I. (1995) "Continued Development of a Helicopter Rotor Model
Employing Smart Trailing-Edge Flaps for Vibration Suppression" Proc. SPIE's 1995

Conference on Smart Structures and Materials, San Diego, CA, Feb. 27 - Mar. 3, pp. 2-
19.

Bhimaraddi, A. and Stevens, L. K. (1984) "A Higher Order Theory for Free Vibration of

Orthotropic, Homogeneous, and Laminated Rectangular Plates" Journal of Applied
Mechanics, No. 51, Mar., pp. 195-198.

Brei, D. (1994) "Design and Development of a New Class of Piezoelectric Actuators for

Force Improvement" Proc. Society of Engineering Science 31 st Annual Technical Meeting,
College Station TX, Oct. 10-12.

Cady, W. G. (1964) Piezoelectricity Vol. 1 Dover Publications Inc., N.Y..

Card, Michael F. (1992) A State of the Art Assessment of Active Structures, NASA TM
#107681, Sep..

Carlson et al. (1990) Electrorheological Fluid Composite Structures, U.S. patent #
4923057, May 8.

Cerny, V. (1982) A Thermodynamical Approach to the Travelling Salesman Problem: An
Efficient Simulation Algorithm, Report, Comenius University.

Chandra, R. (1993) "Active Strain Energy Tuning of Composite Beams Using Shape
Memory Alloy Actuators" Proc. SPIE's 1993 North American Conference on Smart

Materials and Structures, Albuquerque, NM, Feb. 1-4, pp. 1-18.

Chandrashekhara, K. and Agarwal, A. N. (1993) "Active Vibration Control of Laminated
Composite Plates Using Piezoelectric Devices: A Finite Element Approach" Journal of
Intelligent Material Systems and Structures, Vol. 4, Oct., pp. 496-508.

Chandrashekhara, K. and Donthireddy, P. (1996) "Modeling and Shape Control of
Composite Beams with Embedded Piezoelectric Actuators" Composite Structures, Vol. 35,
pp. 237-244.



172
: i:Chattopadhyay,.A-.=AndGu,H (1996)."An Experimental-Invesfigati0niof:i)ei:i[iTiinati0n ' "

Buckling and Postbuckling of Composite_Laminate_'__P:o_.c,.: ASME International
Mechanical Engineering Congress and Exposition, Atlanta, GA, Nov. 17-22.

Chattopadhyay, A. and Gu, H. (1994) "A New Higher-Order Plate Theory in Modeling
Delarnination Buckling of Composite Laminates" AIAA Journal, Vol. 32, No. 8, Aug., pp.
1709-1718.

Chattopadhyay, A. and Gu, H. (1996) "Exact Elasticity Solution for Buckling of
Composite Laminates" Composite Structures, Vol. 34, No. 3, pp. 291-299.

Chattopadhyay, A. and Jha, R. (1996) "Application of Hybrid Optimization Technique for
Improved Aeroelastic Performance of Composite Wings" Proc. 6 th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
Bellevue, WA, Sep. 4-6.

Chattopadhyay, A. and Jha, R. (1996) "Application of Hybrid Optimization Technique for
Improved Aeroelastic Performance of Composite Wings" Proc. 6th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
Bellevue, WA, Sep. 4-6.

Chattopadhyay, A. and McCarthy, T. (1991) Multiobjective Design Optimization of
Helicopter Rotor Blades with Multidisciplinary Couplings Structural Systems and
Industrial Applications; pp. 451-461, Ed. S. Hernandez and C. A. Brebbia.

Chattopadhyay, A. and Seeley, C. E. (1994) "A Simulated Annealing Technique for
Multiobjective Optimization of Intelligent Structures" Smart Materials and Structures, Vol.
3, pp. 98-106.

Chattopadhyay, A. and Seeley, C. E. (1995) "A Coupled Controls/Structures Optimization
Procedure for the Design of Rotating Composite Box Beams with Piezoelectric Actuators"
Smart Materials and Structures, Vol. 4, pp. 170-178.

Chattopadhyay, A. and Seeley, C. E. (1995) "Development of a Hybrid Optimization
Technique with Application to Buckling of Cylindrical Shells" Proc. WCSMO-1, The First

World Congress of Structural and Multidisciplinary Optimization, Goslar, Lower Saxony,
Germany, May 28-June 2.

Chattopadhyay, A. and Seeley, C. E. (1996) "A Higher Order Theory for Modeling
Composite Laminates with Induced Strain Actuators" Composites Part B: Engineering,
Feb., accepted for publication.

Chaudhry, Z. and Rogers, C. A. (1993) "Performance and Optimization of Induced Strain
Actuated Structures Under the Action of External Loads" Proc. 33rd

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference,
Dallas, TX, Apt 13-15, pp. 3475-3484.

Chopra, I. (1993) "Development of a Smart Rotor" Proc. 19th European Rotorcraft
Forum, Cernobbio (Como) - Italy, Sep. 14-16.

Chopra, I. (1996) "Overview on Smart Structures and Integrated Systems" Proc. SPIE's
1996 Conference on Smart Structures and Materials, San Diego, CA, Feb. 26-29.

Chandra, R. and Chropra, I. (1993) "Structural Modeling of Composite Beams with
Induced-Strain Actuators" AIAA Journal, Vol. 31, No. 9, Sep., pp. 1692-1701.

Cook, R. D. and Young, W. C. (1985) Advanced Mechanics of Materials Macmillan
Publishing Company, N.Y..



• '_ :, • 'i• ,/ .... _ i:/ . "7 !

173
Crawley, E. El and Andersonl E. H. <(1989) -Detailed Models ,of.P.lezoelec4rtc-Actuatton o f":i-

Beams" Proc. 30th AIAAIASMEIASCEIAHS/ASC Structures, Structural Dynamics and
Materials Conference, Mobile, AL, Apr., pp. 2000-2010.

Crawley, E. F. and de Luis, J. (1987) "Use of Piezoelectric Actuators as Elements of

Intelligent Structures" AIAA Journal, Vol. 25, No. 10, pp. 1373-1385.

Crawley, E. F. and Lazarus, K. B. (1991) "Induced Strain Actuation of Isotropic and
Anisotropic Plates" AIAA Journal, Vol. 29, No. 5, June, pp. 944-951.

Detwiler, D. T., Shen, M.-H.H. and Venkayya, V. B. (1995) "Finite Element Analysis of
Laminated Composite Structures Containing Distributed Piezoelectric Actuators and
Sensors" Finite Elements in A_zalysis and Design, Vol. 20, pp. 87-100.

Dowell, E. H. (ed.), Crawley, E. F., Curtiss, H. C. Jr., Peters, D. A., Scanlan, R. H.,
and Sisto, F. (1995) A Modern Course in Aeroelasticity Kluwer Academic Publishers,
Boston.

Durney, C.H., Harris, L.D. and Alley, C.L. (1982) Electric Circuits: Theory and
Engineering Applications Holt, Rinehart and Winston, N.Y..

Encyclopedia Britannica (1994) Piezoelectricity Encyclopedia Britannica Inc., Chicago.

Fadel, G. M., Riley, M. F. and Barthelemy, J. F. (1990) "Two Point Exponential
Approximation Method for Structural Optimization" Structural Optimization, Vol. 2, pp.
117-124.

Fletcher, R. (1970) "ANew Approach to Variable Metric Algorithms" Computer Journal,
Vol. 13, No. 13, pp. 317-322.

Freidmann, P. P., Carman, G. and Millott, T. A. (1995) "Magnetostrictively Actuated
Control Flaps for Vibration Reduction in Helicopter Rotors" Proc. Second Workshop on
Smart Structures and Materials, Sponsored by the U. S. Army Research Office, University
of Maryland, College Park, MD, Sep. 5-7.

Funakubo, H. (1987) Shape Memory Alloys Gordon and Breach Science Publisher, N.Y..

Fung, Y.C. (1993) An Introduction to the Theory of Aeroelasticitv Dover Publications,
Inc, New York.

Garner, G. M. (1977) "A New Microphone for Telephone Handsets" Systems
Technology, Vol. 27, Nov..

Geman, S. and Geman, D. (1984) "Stochastic Relaxatin, Gibbs Distributions, and the

Bayesian Restoration of Images" Proc. IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 6, No. 6, Nov..

Ghorayeb, S. R. and Straub, F. K. (1995) "Application of Magnetostrictive Smart
Materials in Rotor Servoflap Control" Proc. SPIE's 1995 Conference on Smart Structures

and Materials, San Diego, CA, Feb. 27 - Mar. 3, pp. 28-37.

Gummadi, L. N. B. and Hanagud, S. (1995) "Vibration Characteristics of Beams with
Multiple Delaminations" Proc. 36th AIAA/ASMEIASCEIAHSIASC Structures, Structural

Dynamics and Materials Conference - Adaptive Structures Forum, New Orleans, LA, Apr.
10-14, pp. 140-150.

Guo, R. and Chattopadhyay, A. (1995) "Energy Absorption in Composite Plates Using
Analytical Sensitivity Analysis and Hybrid Optimization" Proc.. AHS National Technical
Specialists Meeting, Williamsburg, VA, Oct. 30-Nov. 2.



..... , .,.

........................ 174 ......
Ha, Sung Kyu,:.Keilers, Charles and Chang_ Fu-Kuo(1992)t_Fin:ite Element Analysis0f " ..... .....
Composite Structures Containing Distributed Piezoceramic Sensors_andActuators,' AIAA

Journal, Vol. 30, No. 3, Mar., pp. 772-780.

Hanagud, S., Obal, M. W., Calise, A. J. (1992) "Optimal Vibration Control by tile Use of
Piezoceramic Sensors and Actuators" Journal of Guidance, Control and Dynamics, Vol.
15, No. 5, pp. 1199-1205.

Heeg, J. (1992) "An Analytical and Experimental Investigation of Flutter Suppression via
Piezoelectric Actuation" Proc. AIAA 33rd Dynamics Specialists Meeting, Washington
D.C., pp. 237-247.

Hwang, W. S., Park, H. C. and Hwang, W. (1993) "Vibration Control of a Laminated

Plate with Piezoelectric Sensor/Actuator: Finite Element Fommlation and Modal Analysis"
Journal of Intelligent Material Systems and Structures, Vol. 4, July, pp. 317-329.

Ikuta, K. Tsukamoto, M. and Hirose, S. (1992) "A Tiny Silent Linear Cybernetic Actuator
Driven by Piezoelectric Device with Electromagnetic Clamp" Proc. IEEE Robotics and
Automation Society Conference on MicroElectroMechanical Systems, Traven-mnde,
Germany, Feb. 4-7, pp. 232-237.

Ingber, L. (1993) "Simulated Annealing: Practice versus Theory" Journal of Mathematical
and Computational Modeling, Vol. 18, No. 11, pp. 29-57.

Jones, M. TI, Patrick, M. L. (1996) LANZ: Software for Solving the Large Sparse

Symmetric Generalized Eigenproblem, Public Domain Software Documentation, Apr..

Kalrnan, R. E. (1963) The Calculus of Variations and Optimal Control Theo12/_ University
of California Press, Berkeley, CA.

Kamath, G. M. and Wereley, N. M. (1995) "Development of ER-Fluid Based Actuators
for Rotorcraft Flexbeam Applications" Proc. SPIEs 1995 North American Conference on

Smart Materials and Structures, San Diego, CA, Feb. 27 - Mar. 3, pp. 120-133.

Kardomateas, G. A and Schmueser (1988) "Buckling and Postbuckling of Delaminated
Composites Under Compressive Loads Including Transverse Shear Effects" AIAA
Journal, Vol. 26, No. 3, pp. 337-343.

Kawai, H. (1969) "The Piezoelectricity of Poly Vinylidene Fluoride" Japanese Journal of
Applied Physics, Vol. 8, pp. 975-976.

Kawai, H. (1969) "The Piezoelectricity of Poly Vinylidene Fluoride" Japanese Journal of
Applied Physics, Vol. 8, pp. 975-976.

Kim, S. J. and Jones, J. D. (1990) "Optimal Design of Piezo-Actuators for Active Noise
and Vibration Control" Proc. AIAA 13th Aeroacoustics Conference, Tallahasse, FL, Oct.
22-24, pp. 1-11.

Kincaid, D. R., Respess, J. R., Young, D. M., and Grimes, R. G. (1996) ITPACK 2C: A
FORTRAN Package for Solving Large Sparse Linear Systems by Adaptive Accelerated
Iterative Methods, Public Domain Software Documentation, Apr..

Koconis, D. B., Kollar, L. P. and Springer, G. S. (1994) "Shape Control of Composite

Plates and Shells with Embedded Actuators. I. Voltages Specified" Journal of Composite
Materials, pp. 415-456.

Lee C. K. (1990) "Theory of Laminated Piezoelectric Plates for the Design of Distributed

Sensors�Actuators. Part 1: Governing Equations and Reciprocal Relationships" Journal of
the Acoustical Society of America, Vol. 87, No. 3, Mar., pp. 1144-1158.



..................... 175
-Lee,C. K. and MoOn,F. C.:(1989)":'Ealnlil:aied.Piezopolymer.Plates..:_fOr_.Torsionm_d: ........74

Bending Sensors and Actuators" Journal of the Acoustical Society of America, Vol. 85,
No. 6, June, pp. 2432-2439.

Lee, H. J. and Saravanos, D. A. (1995) "Coupled Layerwise Analysis of

Thermopiezoelectric Smart Composte Beams" A1AA Journal, Aug, submitted for possible
publication.

Lee, J. E. and Fassois, S. D. (1990) "A Stochastic Suboptimum Maximum Likelihood

Approach to Structural Dynamics Identification" Proc. of the 8th International Model
Analysis Conference, Kissimmee, FL, Jan. 29-Feb. 1, pp. 1424-1433.

Leeks, T. J. and Weisshaar, T. A. (1995) "Optimization of Unsymmetric Actuators for
Maxin-mm Panel Deflection Control" Proc. SPIE's 1995 Conference on Smart Structures

and Materials, San Diego, CA, Feb. 27 - Mar. 3, pp. 404 1.

Lin, C. Y. and Crawley, E. F. (1995) "Aeroelastic Actuation Using Elastic and Induced

Strain Anisotropy" Journal of Aircraft, Vol. 32, No. 5, Sep.-Oct., pp. 1130-1137.

Lin, M. W. and Rogers, C. A. (1993) "Modeling of the Actuation Mechanism in a Beam
Structure with Induced Strain Actuators" Proc. 34th AIAAIASMEIASCEIAHS/ASC

Structures, Structural Dynamics and Materials Conference, LaJolla, CA, Apr. 19-22, pp.
3608-3617.

Lobitz, D. W., Grossman, J. W., Allen, J. J. and Rice, T. M. (1995) "Shape Control of
Solar Collectors Using Shape Memory Alloy Actuators" Proc. 36th
AIAAIASMEIASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference

- Adaptive Structures Forum, New Orleans, LA, Apr. 10-13, pp. 3357-3369.

Luenberger, D. G. (1989) Linear and Nonlinear Programming Addison-Wesley Publishing
Company, Reading, MA.

Lyon, J. (1996) "Development and Validation of a Linearized ARMAX System
Identification Algorithm" Masters Thesis, Arizona State University.

Makris, N., Hill, D. Burton, S. and Jordan, M. (1995) "Electrorheological Fluid Damper
for Seismic Protection of Structures" Proc. SPIEs 1995 North American Conference on

Smart Materials and Structures, San Diego, CA, Feb. 27 - Mar. 3, pp. 184-194.

Mason. W. (1950) Piezoelectric Crystals and Their Application to Ultrasonics D. Van
Nostrand Co. , N.Y..

McGee, O. G. and Leissa, A. W. (1991) "Three-Dimensional Free Vibrations of Thick

Skewed Cantilevered Plates" Journal of Sound and Vibration, Vol. 144, No. 2, pp. 305-
322.

Meirovitch, L. (1990) Dynamics and Control of Structures John Wiley and Sons, N.Y..

Metropolis, N., Rosenbluth, A., Rosenbulth, M, Teller, A. H. and Teller, E. (1953)
"Equation of State Calculations by Fast Computing Machines" Journal of Chemical
Physics, Vol. 21, pp. 1087-1092.

Mignolet, M. P., Red-Horse, J. R and Lin, C-C (1993) "A Multistage ARMAX
Identification of Structures" Proc. 34th AIAA/ASME/ASCE/AHS/ASC Structures,

Structural Dynamics and Materials Conference, LaJolla, CA, Apr. 19-22, pp. 3366-3374.

Mignolet, M. P. and Red-Horse, J. R. (1994)"ARMAX Identification of Vibrating
Structures: Model and Model Order Estimation" Proc. 35th AIAA/ASME/ASCE/AHS/ASC

Structures, Structural Dynamics and Materials Conference - Adaptive Structures Forum,
Hilton Head, SC, Apr. 21-22. pp. 1628-1637.



, ..... : : •7: :_-_7::: 176:1' :...
M ignoiet;=M-i :(=1995)-MAE 5i5! Structural Dynamics (classn6te/s), Jan. - May.

Mitchell, J. A. and Reddy, J. N. (1995) "A eefineci Hyi_i_id:f;l_aie_The_0i£y_for Composite
Laminates with Piezoelectric Laminae" International Journal of Solids and Structures, Vol.
32, No. 16, pp. 2345-2367.

Mitchell, J. A. and Reddy, J. N. (1995) "A Study of Embedded Piezoeleclric Layers ill
Composite Cylinders" Journal of Applied Mechanics, Vol. 62, Mar., pp. 166-173.

Mollenhauer, D. H. and Griffen, O. H. Jr. (1994,) "Induced Strain of Actuation of Surface

Bonded Piezoceramic Patches: A Numerical and Experimental Study" Journal of Intelligent
Material Systems and Structures, Vol. 5, pp. 335-362.

Newnham, R. E. and Ruschau, G. R. (1991) "Smart Electroceramics" Journal of the
American Ceramic Society, Vol. 74, No. 3, Mar., pp. 463-480.

Pagaldipti, N., Narayan, J. R. and Chattopadhyay, A. (1996) "Muitidisciplinary
Optimization Procedure for High Speed Aircraft Using a Semi-Analytical Sensitivity
Analysis Procedure and Multilevel Decomposition" Proc. 37th
AIAAIASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference,
Salt Lake City, UT, Apr. 15-18.

Pagano, N. J, (1970) "Exact Solutions for Rectangular Bidirectional Composites and
Sandwich Plates" JournalofComposite Materials, Vol. 4, pp. 20-34.

Paige, D. A., Scott, R. C. and Weisshaar, T. A. "Active Control of Composite Panel
Flutter Using Piezoelectric Materials" Proc. SPIE's 1993 North American Conference on

Smart Materials and Structures, Albuquerque, NM, Feb. 1-4.

Pavier, M. J. and Clarke, M. P. (1996) "A Specialized Composite Plate Element for

Problems of Delamination Buckling and Growth" Composite Structures, Vol. 35, pp. 45-
53.

Pinkerton, J. L., McGowan, A. R., Moses, R. W., Scott, R. C. and Heeg, J. (1996)
"Controlled Aeroelastic Response and Airfoil Shaping Using Adaptive Materials and
Integrated Systems" Proc. SPIEs 1996 Conference on Smart Structures and Materials, San
Diego, CA, Feb. 26-29.

Ramamurti, V. and Kielb, R. (1984) "Natural Frequencies of Twisted Rotating Plates"
Journal of Sound and Vibration, Vol. 97, No. 3, pp. 429-449.

Ray, M. C., Bhattacharya, R. and Samanta, B. (1993) "Exact Solutions for Static Analysis
of Intelligent Structures" AIAA Journal, Vol. 31, No. 9, Sep., pp. 1684-1691.

Reddy, J. N. (1984) Energy and Variational Methods in Applied Mechanics John Wiley
and Sons, N.Y..

Reddy, J. N. (1990) "A General Non-Linear Third-Order Theory of Plates with Moderate
Thickenss" hTternation Journal of Non-Linear Mechanics, Vol. 25, No. 6, pp. 677-686.

Ren, J. G. and Hinton, E. (1986) "The Finite Element Analysis of Homogeneous and
Laminated Composite Paltes Using a Simple Higher Order Theory" Communications in
Applied Numerical Methods, Vol. 2, pp. 217-228.

Richard, J. S. and Cudney, H. H. (1993) "Modeling Multiple Layer Piezoelectric
Actuators in Active Structural Control" Proc. SPIE's 1993 North American Conference on

Smart Materials and Structures, Albuquerque, NM, Feb. 1-4.

Robbins, D. H. and Reddy, J, N. (1993) "Modeling of Actuators in Laminated Composite
Structures" Proc. SPIE's 1993 North American Confernece on Smart Structures and

Materials, Albuquerque, NM, Feb 1-4, pp. 485-495.



177
-Robbins, D: H. and Reddy, J. N. (1991);%fiai_sigT017 Pie zoeiectrical.ly-:A¢_uated-Beams ............."*:

Using a Layerwise Displacement Theory" Computers and Structures, Vol. 41, No. 2, pp.
265-279.

Rodden, W. P. and Albano, E. (1969) "A Doublet-Lattice Method for Calculating Lift
Distributions on Oscillating Surfaces in Subsonic Flows" AIAA Journal, Vol. 7, No. 2,
Feb., pp. 279-285.

Rogers, C. A, Barker, D. K. and Jaeger, C. A. (1989) "Introduction to Smart Materials

and Structures" Proc. U. S. Army Workshop on Smart Materials, Structures and
Mathematical Issues, Virginia Polytechnic Institute, Sep. 15-16.

Schetky, L. (1979) "Shape Memory Alloys" Scientific American, Vol. 241, pp. 74-82.

Seeley, C. E. and Chattopadhyay, A. (1996) "Modeling Delaminations in Smart Composite
Laminates" Proc. 37th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and
Materials Conference and Adaptive Structures Forum, Salt Lake City, UT, Apr. 15-19.

Seeley, C. E., Chattopadhyay, A. and Brei, D. (1996) "Development of a Polymeric
Piezoelectric C-Block Actuator Using a Hybrid Optimization Procedure" AIAA Journal,
Vol. 34, No. 1, Jan., pp. 123-128.

Seeley, C. E., Chattopadhyay, A. and Mitchell, L. (1996) "Design of a Smart Flap Using
C-Block Actuators and a Hybrid Optimization Technique" Proc. SPIEs 1996 North

American Conference on Smart Materials and Structures, San Diego, CA, Feb. 26-29.

Seeley, C. E., Chattopadhyay, A. and Mitchell, L. (1997) "Design of a Smart Flap Using
C-Block Actuators and a Hybrid Optimization Technique" Smart Materials and Structures,
Jan., accepted for publicatiofi.

Shah, D. K., Joshi, S, P, and Chan, W. S. (1993) "Structural Response of Plates with
Piezoceramic Layers" Proc. SPIE's 1993 North American Conference on Smart Materials

and Structures, Albuquerque, NM, Feb. 1-4, pp. 428-439.

Shieh, R. C. (1993) "Finite Element Formulation for Dynamic Response Analysis of
Multiaxially Active 3-D Piezoelectric Beam Element Structures" Proc. 34th

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference,
LaJolla, CA, Apr. 19-22, pp. 3250-3260.

Sirkis, J. S. (1996) "What Does it Take to be Smart ?" Proc. SPIE's 1996 Conference on

Smart Structures and Materials, San Diego, CA, Feb. 26-29, invited technical talk.

Song, O., Ligrescu, L. and Rogers, C. A. (1992) "Application of Adaptive Technology to
Static Aeroelestic Control of Wing Structures" AIAA Journal, Vol. 30, No. 12, Dec., pp.
2882-2889.

Sprangler, R. L. Jr. and Hall, S. R. (1990) "Piezoelectric Actuators for Helicopter Rotor
Control" Proc. 31st AIAA/ASME/ASCE/AHS/ACE Structures, Structural Dynamics and
Materials Conference, Long Beach, CA, Apr. 2-4, pp. 1589-1599.

Srinivas, S., Joga Rao, C. V. and Rao, A. K. (1970) "An Exact Analysis for Vibration of
Simply Supported homogeneoys and Laminated Thick Rectangular Plates" Journal of
Sound and Vibration, Vol. 12, pp. 187-199.

Stevens, T. ( 1991 ) "Structures Get Smart" Materials Engineering, Oct., pp. 18-20.

Stout, D. F. (1976) Handbook of Operational Amplifier Circuit Design, NY, McGraw
Hill.

Sullivan, T. D. and Powers, J. M. (1978) "Piezoelectric Polymer Flexural Disk

Hydrophone" Journal of the Acoustical Society of America, Vol. 63, No. 5, May.



• %, _::_ii!i_ _'

........................ 1-78 .........
Szu.,(Harold.,and:.Hartley;..Ralph ( 1987):-"Fast-Simulated Annealing, PhySical.Lette?s A, : ...... ""

Vol. 122, No. 3, June, pp. 157-162. -........................................................

Taguchi, M. (1987) "Applications of High Technology Ceramics in Japanese Automobiles"
Advances in Ceramic Materials, Vol. 2, pp. 754-762.

Thirupathi, S. R. and Naganathan, G. G. (1992) "Use of Piezoceramic Actuator For
Automotive Active Suspension Mechanisms: A Feasibility Study" Proc. 22nd Biennial
Mechanism Conference, Scottsdale AZ, Sep. 23-26, pp. 233-241.

Tiersten, H. F. (1969) Linear Piezoelectric Plate Vibrations Plenum Press, New York.

Tsai, S. W. and Wu, E. M. (1971) "A General Theory of Strength for Anisotropic
Materials" Journal of Composite Materials, Vol. 5, pp. 58-80.

Tsuka, H. and Nakomo, J. (1990) "A New Electronic Controlled Suspension Using
Piezoelectric Ceramics" Proc. IEEE Workshop on Electronic Applications in
Transportation.

Tzou, H. S. and Zhong, J. P. (1993) "Electromechanics and Vibrations of Piezoelectric
Shell Distributed Systems" Journal of Dynamic Systems Measurement, and Control, Vol.
115, Sep., pp. 506-517.

Vanderplaats, G. N. (1984) Numerical Optimization Techniques for Engineering Design
with Applications McGraw-Hill Publishing Company, N.Y..

Vinson, J. R. and Sierakowski, R. L. (1987) The Behavior of Structures Composed of
Composite Materials Martinus Nijhoff, Dordrecht, The Netherlands.

Voigt, W. (1928) Lehrbucb der Kristallphysik, 2nd ed. B. G. Teubner, Leipzig.

Walz, C. and Chopra, I. (1994) "Design and Testing of a Helicopter Rotor Model with
Smart Trailng Edge Flaps" Proc. 35th AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics and Materials Conference - Adaptive Structures Forum, Hilton Head,
SC, Apr. 21-22.

Wang, Bor-Tsuen and Rogers, Craig A. (1991) "Laminate Plate Theory for Spatially

Distributed Induced Strain Actuators" Journal of Composite Materials, Vol. 25, Apr., pp.
433-452.

Whitcomb, J. D. (1981) "Finite Element Analysis of Instability Related Delamination
Growth" Journal of Composite Materials, Vol. 15, pp. 403-426.

Whitcomb, J. D. (1989) "Three Dimensional Analysis of a Postbuckled Embedded
Delamination" Journal of Composite Materials, Vol. 23, pp. 862-889.

Winslow, W. M. (1949) "Induced Fibration of Suspensions" Journal of Applied Physics,
Vol. 20, Dec., pp. 1137-1140.

Xu, Q. C., Newnham, R. E., Blaskiewicz, Fang, T. T., Srinivasan, T. T. and
Yoshikawa, S. (1990) "Nonlinear Multilayer Composite Transducers" Proc. IEEE 7th
International Symposium on Applications for Ferroelectrics, Urbana, I1, June 6-8.

Yang, H. T. Y. and He, C. C. (1994) "Three-Dimensional Finite Element Analysis of Gree
Edge Stresses and Delamination of Composite Laminates" Journal of Composite Materials,
Vol. 28, No. 15, pp. 1394-1412.

Zienkiewicz, O. C. (1977) The Finite Element Method, New York, McGraw Hill.



Appendix A

Piezoelectric Constitutive Relations
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A.1 General formulation .....................................................

Voigt (1928) formalized the equations for the free energy of a piezoelectric material

which he called the "thermodynamic potential". When the fl'ee energy is expressed in terms

of strains, it is known as the first thermodynamic potential and is denoted by H(8,E). In

tensor notation, it is formulated as follows (Tiersten; 1969).

H(E,E) = 21--CEklEijEkl -- eijkgiEjk -- 1 TI_jEiE j (A.1)

where cijEkl, eij k and rl_j are the coefficients of the elastic stiffness at constan! electric field,

piezoelectric stress and dielectric pennittivity at constant strain, respectively. The quantities

Eij and Ei are the components of strain and electric field, respectively. The first term on the

right hand side of Eqn. A.1 represent the elastic strain energy. The second term represents

the electro-mechanical coupling while the third term is the electric energy. The differential

coefficients of the first thermodynamic potential with respect to the components of elastic

strain are the components of stress and the differential coefficients with respect to the

components of electric field are the components of charge. These are the fundamental

piezoelectric equations in terms of the strains and are given as follows

E (converse effect) (A.2)0H(8,E) _ _ij = CijklSkl - ekijgk

Oeij

aH(a,Z)
- D i = eiklakl + rl_kE k (direct effect) (A.3)

0Ei

The free energy can also be expressed in terms of stresses. It is then called the second

thermodynamic potential, denoted by H(o,E) and is expressed as follows.

IF, 1 c_
H((7,E) = -- _-SijklO'ijO'kl + dijkEiO'jk + 2]]ij Ei Ej (A.4)

E
where shi, dij k and rl_j are the coefficients of the elastic compliance at constant electric

field, piezoelectric strain and dielectric permittivity at constant stress, respectively and (Yij

are the components of stress. The differential coefficients of the second thermodynamic
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the differential coefficients with respect to the components of electric field are the

components of charge These are the alternative form of the fundamental piezoelectric

equations in terms of the stresses.

c3H(cy,E) _ eiJ sE
C_Oij = ijklO'kl + dkijE k (converse effect) (A.5)

OH(o,E)
- D i = diklO'kl + _kEk (direct effect) (A.6)

c_E_

The constitutive relations based on the first thermodynamic potential are used most often

since they are a function of the components of strain rather than stress. However, the

piezoelectric strain coefficients (dik 1) are more commonly used than the stress coefficients

(eikl). A relationshiP between the piezoelectric strain and stress coefficients allows the

constitutive relations based on the first thermodynamic potential to be expressed using the

piezoelectric strain coefficients. It is known that dielectric terms rl; and 1"11 are largely

independent of stress and strain. Therefore, the following relationship using Eqns. A.3

and A.6 can be obtained.

eikl_-kl = dildO'kl (A.7)

The stress is related to the strain through Hooke's law

Gij = Cijktgkl (A.8)

Substituting Hooke's law into Eqn. A.7, the piezoelectric strain coefficients are now

expressed as follows.

eikl = diklCklmn (A.9)

Substituting the above equation into Eqns. A.2 and A.3 yields the following constitutive

relations expressed in terms of the components of strain and piezoelectric strain

coefficients.
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.................. (A.i0) "

= e E (direct effect)Di diklCkhnngmn + Tlik k (A.1t)

Rearranging and using matrix notation produces the constitutive equations for piezoelectric

materials.

cy = Q(a - dl'E ' (converse effect) (A. 12)

D = WE + dQe direct effect) (A.13)

where Q is the elastic stiffness matrix, d is tile piezoelectric strain coefficient matrix, hv is

the dielectric constant matrix, (_ and e are the stress and strain vectors, respectively and D

and E are the electric charge and the electric field vectors, respectively.

A.2 Theoretical background

The focus of this dissertation is to utilize the macroscopic properties of piezoelectric

materials and integrate them as elements of smart composite structures as both sensors and

actuators. To achieve this goal, it is necessary to understand the electromechanical

constitutive relationships which govern these materials. As mentioned previously, Jacques

and Pierre Curie discovered the direct piezoelectric effect in 1880 when they observed that

an electric charge developed on certain materials in response to a mechanical stress. Soon

thereafter, Gabriel Lippman predicted the converse piezoelectric effect which occurs when a

mechanical strain develops in response to an applied electric charge. His rational was as

follows. Consider the following thermodynamic potential function formulated in terms of a

single scalar stress and electric field (Cady; 1964).

= lccY22 + 1 TI'E2 + d'cyE (A.14)
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and d' is the piezoelectric strain coefficient. The change in _ due to a small variation in E

and cy is as follows.

d_ = DdE + 8dcy (A.15)

where D is the electric charge and _ is the strain which are found as follows.

D = 0__o (A.16)

O_ (A.17)

Since the order in which differentiation occurs, it follows that

_E = _-0--_o (a.1 8)

Since it is known that the relationship between an applied stress and an electric charge is

linear over a wide range of pressure for most crystals, the following is true.

OD = 8 (A.19)

where _ is a constant. This was verified by the Currie brothers to be true for piezoelectric

crystals as well. Lippman showed that not only must converse relationship exist between

the strain and an applied electric field, it must be equal to the same constant previously

found for the direct relationship.

at 0D =8 (A.20)

His theoretical prediction was soon found to be true through further experiments by the

Curries. It must be noted that Eqn. A.15 is analogous to the enthalpy of a reversible

system where the quantities D, E, e and cy are analogous to absolute temperature, entropy,

volume and pressure in ordinary thermodynamics. The electric charge, D, is also
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electric field, E, is analogous to the stress, cy, and is often termed the electric force. The

above analysis can easily be expanded to incorporate a multi dimensional state of stress and

electric field.

A.3 Physical interpretation of piezoelectric constants

Several coefficients are defined to characterize the properties of a piezoelectric material.

Three axes are used to identify directions in a piezoelectric material which are necessary to

define these coefficients. These axes, termed 1,2 and 3, are analogous the X, Y and Z of

the classical three dimensional orthogonal set of axes and are indicated in Fig. A.1 (a). The

polar, or 3, axis is taken parallel to the direction of polarization within the ceramic. This

direction is established during manufacturing by a high DC voltage that is applied between

a pair of electroded faces to activate the material. The polarization vector "P" is represented

by an arrow pointing from the positive to the negative poling electrode. Piezoelectric

coefficients with double subscripts link electrical and mechanical quantities. The first

subscript gives the direction of the electrical field associated with the voltage applied or the

charge produced. The second subscript gives the direction of the mechanical stress or

strain. For the current research, the most important coefficients are the piezoelectric strain

coefficients (dij) which relate the mechanical strain developed in a piezoelectric material to

the applied electric field.

strain developed
d = (A.21)

applied electric field

Conversely, the dij coefficients also relate the charge collected due to an applied mechanical

stress. These are contained in the piezoelectric strain coefficient matrix, d, which has the

following form for piezoelectric material having orthorhombic ram2 symmetry such as

PVDF (polyvinylidene fluoride) and PZT (lead zirconate titanate).
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d=

0 d31

0 0 d32

0 0 d33

0 d24 0

dis 0 0

0 0 d36
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(a .22)

The dimensions are expressed as length per length, per volts per length (length per volt).

For instance, the d3i coefficient relates the coupling between an applied electric field

(voltage) in the 3 direction to the strain in the 1 direction as shown in Fig. A.1 (b).

3

1

vS-?

• ,y

1

;2

(a) (b)
Fig. A1. Piezoelectric material: (a) coordinate system (b) effect of d31 coefficient.

The piezoelectric stress coefficients, gij, relate the open circuit electric field to the applied

mechanical stress as follows.

open circuit electric field
Or._

_' applied mechanical stress (A.23)

The dimensions for gij are expressed as volts per length, per force per length squared.

These coefficients are used less often then the dij coefficients since normally the electric

field is taken as the independent variable. However, their is a direct correspondence of

nonzero values of dij to nonzero values of gij. The relative dielectric constant K is the

dimensionless ratio of the permittivity of the material,_, to the permittivity of free space,

E o •
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Tile piezoelectric strain and stress coefficients are related through the dielectric properties as

follows.

dij = K E_o gij (A.25)
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Appendix B

Displacement Field Justification
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_.i..............:.,.....................i.............:--.:-._;:_.T.he.,f0rlnutation"of tile higherorder displacement=:field-is based on both physical .... •

relevance and considerations for tile finite element implementation in order to solvc useful

problems. A great deal of intuition is gained by solving a simple beam problem, i._sing the

Ritz method, which is used to illustrate concepts which can be applied to the advanced

formulation of the smart composite laminate. The beam has length L, height h, distributed

load q and elastic and shear moduli E and G, respectively. One end is fixed as indicated in

Fig. B.1.

q

 IIIIIIII

Fig. B 1 Cantilever beam with distributed load.

The general higher order displacement field for the beam is given as a cubic expansion

of the inplane displacements (u) and a single function for the transverse displacement (w)

as follows.

U= _10(X)+Zqbl1(X)+ Z2qbl2(X)q-Z3,13(X)

W=*30(X)
(B.1)

The in plane term _10(x,y) is ignored for this simple investigation. The relevant normal

and shear strain are given as follows.

_U

a 3x (B.2)

c_u Ow

"c 3z + 3x (B.3)

where e is the normal strain and "c is the transverse strain. The total potential energy is

given as follows.
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(B.4)

The principle of minimum total potential energy states that the equilibrium position is found

which minimizes the potential functional FI. This is achieved by applying standard

procedures in variational calculus which are used to find a stationary point of FI and derive

the Euler-Lagrange equations which constitute the equilibrium equations and boundary

conditions. The results are well known and not presented here for the sake of brevity.

Instead, approximate solutions are found using the Ritz approach to determine values for

the coefficients of interpolating polynomials. These approximate solutions represent

properties of the finite element solution which is used for implementation of the higher

order theory (Chapter 3). This is achieved by finding a stationary point to FI with respect

to the unknown coefficients of the approximation polynomials (ai) as follows.

3rI

Oai 0 (B.5)

Using this approach, the coefficients can be determined by solving the set of resulting

equations from Eqn. B.5.

Classical theory

First, consider the case of classical theory which can be obtained by setting

_12(x)=_13(x)=0. The quantity (_12(x,y) is determined by using the Kirchcoff

condition that states planes normal to the neutral axis remain plane after bending for

sufficiently thin beams and the shear stress vanishes as follows.

a%l
3_31-0 -+ _11- (B.6)

=_11 _ 3x 3x

Setting _31 = W0 yields the following displacement field for classical beam theory.
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(B.7)

Selecting a two term Ritz solution which satisfies the geometric boundary conditions at tile

fixed end, w o=b2 xz+b3x 3 , results in the following values for the unknown

interpolation polynomial.

2
5 qL " x2 qL x3Wo = - - (B.8)2 Eh 2 Eh 2

A three term Ritz solution, w 0 = b2x2 + b3 x3 + b4 x4, yields the exact solution. That is,

3Eh_----s-qL2 x 2-2Eh 2qL x3+l q x42Eh 2 (B.9)W 0

Upon closer examination, the two term solution is a least squares fit to the exact solution.

It gives the exact solution at the points where the second order Legendre polynomial

vanishes. It is important to note that the shear stiffness, G, does not enter here since the

shear strain is assumed to be zero. The theory is valid for thin beams where the shear

strain is not important. However, significant errors are obtained for thicker beams where

the shear strain becomes important.

First order theory

The first order theory, which is identical to the Timeshenko beam theory, accounts for

additional deformation of the cross section. It recognizes that the action of the shear force

causes a shear strain which in turn causes a warping of planes normal to the neutral axis.

The theory in effect averages the effect of shear strain over the entire cross section. This

theory utilizes two functions, _I1 and _)31. Setting _11 =Ul and _30 =Wo yields the

following displacement field for first order theory.

U =ZU 1

w = w 0 (B. 10)
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...................... f{x'e(]'end, u_= atx and w 0 = blx , now results in the following values for the unknown

interpolation polynomial.

u 0 = -3 qL2
GL 2 +Eh2 x (B.11)

1 qL( 4GL2 + Eh:2)

w0= 2 G---_+-Et-_) x (B.12)

A thin beam in which the shear strain is not important can be represented by an infinite

shear stiffness (G --->,_). It is clear that as G ---> ,_,, both al and bl --->0. This serious

deficiency in the solution and a clear case of a shear "locking" since a large load q produces

practically no displacements for thin beams. The principle of minimum potential energy

can be viewed as a minimization process of the strain energy potential. The shear term in

the energy functional, G'c 2, represents a constraint, % with a penalty term, G. As the limit

of this penalty term approaches infinity, a penalty condition is introduced on the shear

strain which requires that the shear strain z=alx+b I must vanish in the Ritz

approximation which is the case for thin beams. This penalty term requires that both al and

bl --->0 which also forces the bending strain to zero and does not accurately represent the

physical situation. A meaningful solution can not be obtained in this case which results

from the inconsistent interpolation of the shear strain. A three term Ritz solution with

u 1 = alx and w 0 = blx + b2 x2, gives the following approximate solution.

9

u0 =-2qL_ x (B.13)
Eh _

wo=qLx 1 q( -2GL2 +Eh2)x 2 (B.14)
G 2 EGh 2

The shear strain is now given as

q:=bl +(al +2b2)x (B.15)
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(a I + 2b2) --->0as well. Therefore, the shear strain is now effectively approximated, even

for a thin beam with a rigid shear stiffness. This is because the shear strain does not

introduce a spurious constraint so that the bending strain, although constant, is not reduced

to zero and the physical aspect of the problem is accurately modeled. The reason this

interpolation is effective is because the constraint (a I + 2b2) is consistently balanced. That

is, both u0 and c)w°-- are of the same order. A finite element model based on this
ax

interpolation scheme is completely free from locking. However, a finite element model

which uses quadratic interpolation is quite cumbersome to implement since it requires that

extra nodes be defined which are not required using either linear or cubic interpolations.

Another drawback is the representation of the shear strain as a linear function. Shear

correction factors are required to obtain an accurate solution since the shear is a linear

approximation of a quadratic function. The shear strain distribution also violates the stress

free boundary conditions on the free surfaces which require the shear strain to vanish on

the top and bottom surfaces of the beam.

Higher order theory

The conditions that the shear strains vanish are used by the higher order theory to

satisfy this requirement. Consider the following displacement field.

U = Z_II(X ) 4- Z2_12(X)4- Z3_I3(X)

w = qb30(x ) (B. 16)

In this general form, this higher order displacement field does not satisfy the requirement

that the shear stresses vanish on the free surfaces. Imposing this requirement is equivalent

to setting the shear strain equal to zero at + h/2.

,EIh/2 = 8_.l_h/2 = 0 (B. 17)

This results in the following equations



oBqb30(X)
"c@h/2) = 0 = _ll(x)-hqbla(X )+ _-h2_13(x )+

4 3x

Clearly, qb12(x ) must be zero to satisfy both equalities. In addition,

function qb13(x ) can be solved for in terms of the lower order functions.

following refined displacement field.

U =Z*ll{X )- 3--_ 1

w=*3o(X)

.... 193
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(B.18)

(B.19)

the higher order

This leads to the

(B.2o)

The shear stress is then a quadratic function of z given by the following

q:= 1 - 4-_-W _11 (X) q- (B.21)

which vanishes at +h/2 as required. The refined theory, which contains the same number

of unknown functions as first order theory, is finally obtained by setting qb_ = u 1 and

(P:_o = Wo as follows.

u = ZUl(X) 4z3( 3Wo(X))- 3--_- Ul(X) + 3x (B.22)

w=w0(x)

However, the appearance of the derivative term in u requires a higher order interpolation of

Wo. Choosing a three term Ritz solution, u_ = alx and w 0 = b2 x2 + b3 x3, yields the

following approximate solution.

10qL 2 (-7056G2L 4 - 2261GEL2h 2 + 100E2h 4)
u = (B.23)

Eh 2 (35280G2L4 +7336GEL2h2 +25Eah4 ) x
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w--2Eh (35280G L4+7336GEL h+2SEth4)
(B.24)

68GL +Eh )
- 525qL (35280G2LS7 7_ffEL-_h 2 + 25E2h4 ) x 3

Taking the limit G -o _ to represent a thin beam which has rigid shear stiffness of the Ritz

solution yields the following displacement field.

qL2
u =-2_Tx (B.25)

2

w = qL_ x 2 (B.26)
Eh 2

Despite the additional complexity of the refined displacement field, this approach reduces to

the three term Ritz solution for first order theory. It is also no better than a two term

solution for the refined displacement field using only the quadratic term for w since b2

--->0 for thin beams. In the finite element implementation of the refined displacement

field, the quadratic interpolation of w is cumbersome to implement. A cubic interpolation

that introduces additional degrees of freedom is not justified either since no improvement is

observed in the solution over the simpler first order theory for thin plates. A better

approach is needed.

Modified higher order theory

Considering the physical nature of the problem, it is expected that the bending strain

(_aw0 
result from the rotation of the beam k. Ox )' plus a distortion effect due to shear ul, plus

some higher order terms which can be solved in terms of lower order terms by using the

stress free boundary conditions. This situation can be modeled mathematically by setting

Ow° and _3o = Wo • Substituting into the refined displacement field (Eqn.
¢11 =Ul -- _--_-

B.22) yields the following modified refined displacement field
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(B.27)

Using the same three term approximation to the unknown functions, U 1 = alx and

w 0 = b2x2+b3 x3, yields the following approximate solution for the modified refined

approach.

210q 2
u = ,280GL2 +Eh2) x (B.28)

w = (B.29)
qL2( 1400GL2 +173Eh2)x2 - qL x3

2Eh2(280GL 2 + Eh 2) Eh 2

Again, taking the limit G --->4o to represent a thin beam and reduce the shear constraint to

zero yields the following

u = o (B.30)

5 qL 2 X2 qLx 3w0 - (B.31)
2 Eh 2 Eh 2

These equations are exactly the same as the three term Ritz solution using the classical

theory where the shear stress is assumed to be zero which is true for a beam with infinite

shear stiffness. Therefore, the modified displacement field yields the correct trend for thin

beams by reducing the shear constrain to zero. The higher order interpolation polynomials,

which require additional degrees of freedom in the finite element interpolation, are now

justified since the bending rotation is now a linear function rather than a constant as in the

first order theory. The shear strain is given as follows

OWo Owo
"IT=U 1 +

3x 3x (B.32)

which, when calculated in terms of the Ritz coefficients, z = a 1, vanishes for thin plates as

expected. For thicker plates, the shear strain is accurately accounted for as a quadratic
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is automatically satisfied while avoiding quadratic interpolation schemes which are difficult

to implement. Understanding the physical nature of the problem and viewing the principle

of minimum potential energy as a minimization process which includes the shear as a

constraint allows a modified refined displacement field to be formulated. This displacement

field accurately accounts for the shear strain and produces no spurious constraint which

frees the solution from any form of locking.
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Mesh Generation
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Eaclr element in the finite etement'modet-'for°'the current studyis formulated assuming :: - .......

that the piezoelectric layers are either present throughout the entire element, or are

cornpletely absent. While it is possible to formulate elements which only partially contain

piezoelectric layers, it is quite laborious and computationally inefficient. Since the finite

elements either contain, or do not contain, piezoelectric layers, the boundaries of

piezoelectric layers must coincide with the element nodes. Therefore, a change in the shape

of a piezoelectric layer must be reflected by a change in the finite element mesh. This task

is non trivial and impractical to accomplish by hand for realistic mesh sizes or at each

iteration of a closed loop optimization procedure. Therefore, an efficient strategy must be

devised to generate a finite element mesh to accommodate arbitrary piezoelectric layer

geometries.

The first step in accomplishing the mesh generation is to choose a proper rnesh for the

composite laminate with no piezoelectric layers. Ideally, this mesh should have equally

sized elements for simplicity. The aspect ratio of the k-th element is defined as follows.

1e
Xk

% = ly--7 (C.1)

where 1e and 1e
Xk Yk are the length of the k-th element in the x and y direction, respectively.

These geometric parameters are calculated from the nodal coordinates of each element as

follows (Fig. C. 1).

]exk =Xi+l-Xi (C.2)

C

ly i = Yj+I - Yj (C.3)

The element aspect ratio should be as close to one as possible since the accuracy of the

finite element solution degrades as the aspect ratio differs from one. However, this equally

sized mesh does not necessarily coincide with the boundaries of an arbitrary piezoelectric

layer. Consider the introduction of a piezoelectric layer on a square laminate as shown in
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(a) Theoriginal mesh of square etmnents is shown :in Fig. C.i (b)along witl_ the _

modified mesh to incorporate the piezoelectric layer. In this case, it is clear that node points

of the original mesh corresponding to x3 and Y2 must be changed to accommodate the

piezoelectric layer. In meshes with a practical number of elements, the process of

determining nodal coordinates to incorporate the piezoelectric layer while retaining an

aspect ratio as near to one as possible is a non trivial task.

b 2

b 1

}-
,'k

,,, ,I, a 2

piezo

.... _el

I

original mesh

y41
Y2

mesh

Yl

,I, a 1 Xl x2 x 3 x4

Fig. C 1 Finite element mesh incorporating piezoelectric layers.

The process of determining the best possible mesh for a given actuator size and location

is an optimization problem within itself. The objective is to retain the original element

aspect ratios as closely as possible of the original mesh while incorporating the

piezoelectric layer (an aspect ratio of one is best). A quadratic penalty function is defined

which the sum of the squares of the difference between the element dimensions of the old

and new mesh as follows.

F =I £ 1e' +(lyk 1e- - ) (C4 2 Yk
k=t

The quantities 1e' and 1e'Yi are the element aspect ratios for the new mesh which are

calculated as follows.

e' l l
lx k = Xi+l -- Xi (C.5)
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The quantities x_+l, x_, YS+l and y_ are the nodal coordinates for the new mesh.

Minimizing this penalty function corresponds to retaining the original aspect ratios as

closely as possible. Of course, constraints need to be imposed to ensure that the original

geometry of the laminate is retained and that the proper nodal values correspond to the

edges of the piezoelectric layer. These constraints will be discussed shortly. The minimum

value of F is found by setting the derivatives with respect to the new nodal coordinates to

zero. First, F is rewritten in terms of the nodal coordinates for the original and new mesh.

M-IN-l_ , ]F= 1 EE[({xi+ l-x_}-{xi+ ' xi})2+({Yj+l Yj}-{Y]+l yj})2g - ' - ' - (c.7)
i=l j=l

where M and N are the number of nodes in the x and y directions, respectively. Next,

derivatives of F are calculated with respect to the new nodal coordinates and are set to zero

as follows.

_F
I I I

c_x_ -xi+ 1 +2x i -xi_ 1 =0 i=2,3,-.-,M-1 (C.8)

c_F
/ /

----'7 _
v2yj -Yj+I + 2Yi - Y]-I = 0 j : 2,3,..- N- 1 (C.9)

where it is assumed that all of the nodes in the original mesh are evenly spaced in the x and

y directions. It must be noted that the coordinates of the edges of the laminate are

considered fixed (i=l,M and j=I,N) to retain the original geometry of the laminate.

Therefore, derivatives of the penalty function with respect to the nodal coordinates which

correspond to these nodes are zero. Four additional constraint equations are required to

ensure that this is true.

,' /

X1 = O, XM = L (C. 1O)

t" /

Yl=0, yN=W (C.1 1)
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_: WhereL_:and W are the length andwidth of the lamin_lte, i'espectivelyz Constraints are also

imposed on the nodes nearest the edges of the piezoelectric layer to ensure that these nodes

are aligned with the border of the piezoelectric layer. This is accomplished by setting to

zero all coefficients of the relevant equation except for a single term corresponding to the

constrained node. The term on the right hand side is then set to the value of the nodal

coordinate corresponding to the constrained value of the nodal coordinate. The above

linear equations are uncoupled in the sense that the nodal coordinates in the x direction do

not depend on the nodal coordinates in the y direction and vice versa• The equations which

corresponds to the nodal coordinates in the x direction are written in matrix form as follows

1

-1 2 -1

1

-1

O's

2 -I

0' S

1

-1 2

t

x 1

t

x 2

t

X M _

t

-1 x M_

1 x M

_0 ,

0

a 1 *

0

a 2 *

0

L *

(C.12)

where the constraint equations are flagged with an asterisk (*). Although the resulting set

of equations are not symmetric, they can easily be transformed into a symmetric set of

equations by performing a few elementary row operations. Solving this set of equations

yields optimal values of the nodal coordinates in the x direction to retain element aspect

ratios as near to the original values as possible while incorporating new coordinates due to

the introduction a piezoelectric layer• The equations to determine the nodal coordinates in

the y direction are similar•


